Spaces:
Sleeping
Sleeping
File size: 34,287 Bytes
f97a499 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from base.base_modules import *
from timm.models import create_model
from functools import partial
class Backbone(nn.Module):
"""
Model backbone to extract features
"""
def __init__(self,
input_channels: int = 3,
channels: tuple = (32, 64, 128, 256, 512),
strides: tuple = (2, 2, 2, 2),
use_dropout: bool = False,
norm: str = 'BATCH',
leaky: bool = True):
"""
Args:
input_channels: the number of input channels
channels: length-5 tuple, define the number of channels in each stage
strides: tuple, define the stride in each stage
use_dropout: bool, whether to use dropout
norm: str, normalization type
leaky: bool, whether to use leaky relu
"""
super().__init__()
self.nb_filter = channels
self.strides = strides + (5 - len(strides)) * (1,)
res_unit = ResBlock if channels[-1] <= 320 else ResBottleneck
self.conv0_0 = nn.Sequential(
nn.Conv2d(input_channels, channels[0], kernel_size=7, stride=self.strides[0], padding=3),
nn.GroupNorm(1, channels[0]) if norm == 'GROUP' else nn.BatchNorm2d(channels[0]) if norm == 'BATCH' else nn.InstanceNorm2d(channels[0]),
nn.LeakyReLU() if leaky else nn.ReLU(),
)
self.conv1_0 = res_unit(self.nb_filter[0], self.nb_filter[1], self.strides[1], use_dropout=use_dropout, norm=norm, leaky=leaky)
self.conv2_0 = res_unit(self.nb_filter[1], self.nb_filter[2], self.strides[2], use_dropout=use_dropout, norm=norm, leaky=leaky)
self.conv3_0 = res_unit(self.nb_filter[2], self.nb_filter[3], self.strides[3], use_dropout=use_dropout, norm=norm, leaky=leaky)
self.conv4_0 = res_unit(self.nb_filter[3], self.nb_filter[4], self.strides[4], use_dropout=use_dropout, norm=norm, leaky=leaky)
def forward(self, x):
x0_0 = self.conv0_0(x)
x1_0 = self.conv1_0(x0_0)
x2_0 = self.conv2_0(x1_0)
x3_0 = self.conv3_0(x2_0)
x4_0 = self.conv4_0(x3_0)
return x0_0, x1_0, x2_0, x3_0, x4_0
class TimmBackbone(nn.Module):
"""
Timm backbone to extract features, utilizing pretrained weights
"""
def __init__(self, model_name) -> None:
super().__init__()
self.backbone = create_model(model_name, pretrained=True, features_only=True)
self.determine_nb_filters()
def determine_nb_filters(self):
dummy = torch.randn(1, 3, 256, 256)
out = self.backbone(dummy)
nb_filters = []
for o in out:
nb_filters.append(o.size(1))
self.nb_filter = nb_filters
def forward(self, inputs):
return self.backbone(inputs)
class UNet(nn.Module):
def __init__(self,
model_name: str = None,
in_channels: int = 1,
out_channels: int = None,
channels: tuple = (64, 128, 256, 320, 512),
strides: tuple = (2, 2, 2, 2, 2),
use_dropout: bool = False,
norm: str = 'INSTANCE',
leaky: bool = True,
use_dilated_bottleneck: bool = False):
"""
Args:
model_name: timm model name
input_channels: the number of input channels
in_channels: the number of output channels
channels: length-5 tuple, define the number of channels in each stage
strides: tuple, define the stride in each stage
use_dropout: bool, whether to use dropout
norm: str, normalization type
leaky: bool, whether to use leaky relu
"""
super().__init__()
if model_name not in [None, 'none', 'None']:
# use Timm backbone and overrides any other input arguments
self.backbone = TimmBackbone(model_name)
else:
self.backbone = Backbone(input_channels=in_channels, channels=channels, strides=strides,
use_dropout=use_dropout, norm=norm, leaky=leaky)
nb_filter = self.backbone.nb_filter
res_unit = ResBlock if nb_filter[-1] <= 512 else ResBottleneck
# decoder
self.conv3_1 = res_unit(nb_filter[3] + nb_filter[4], nb_filter[3], use_dropout=use_dropout, norm=norm, leaky=leaky)
self.conv2_2 = res_unit(nb_filter[2] + nb_filter[3], nb_filter[2], use_dropout=use_dropout, norm=norm, leaky=leaky)
self.conv1_3 = res_unit(nb_filter[1] + nb_filter[2], nb_filter[1], use_dropout=use_dropout, norm=norm, leaky=leaky)
self.conv0_4 = res_unit(nb_filter[0] + nb_filter[1], nb_filter[0], use_dropout=use_dropout, norm=norm, leaky=leaky)
# dilated bottleneck: optional
if use_dilated_bottleneck:
self.dilation = nn.Sequential(
nn.Conv2d(nb_filter[4], nb_filter[4], kernel_size=3, stride=1, padding=1, dilation=1),
nn.GroupNorm(16, nb_filter[4]) if norm == 'GROUP' else nn.BatchNorm2d(nb_filter[4]) if norm == 'BATCH' else nn.InstanceNorm2d(nb_filter[4]),
nn.LeakyReLU() if leaky else nn.ReLU(),
nn.Conv2d(nb_filter[4], nb_filter[4], kernel_size=3, stride=1, padding=2, dilation=2),
nn.GroupNorm(16, nb_filter[4]) if norm == 'GROUP' else nn.BatchNorm2d(nb_filter[4]) if norm == 'BATCH' else nn.InstanceNorm2d(nb_filter[4]),
nn.LeakyReLU() if leaky else nn.ReLU(),
nn.Conv2d(nb_filter[4], nb_filter[4], kernel_size=3, stride=1, padding=5, dilation=5),
nn.GroupNorm(16, nb_filter[4]) if norm == 'GROUP' else nn.BatchNorm2d(nb_filter[4]) if norm == 'BATCH' else nn.InstanceNorm2d(nb_filter[4]),
nn.LeakyReLU() if leaky else nn.ReLU(),
nn.Conv2d(nb_filter[4], nb_filter[4], kernel_size=3, stride=1, padding=1, dilation=1),
nn.GroupNorm(16, nb_filter[4]) if norm == 'GROUP' else nn.BatchNorm2d(nb_filter[4]) if norm == 'BATCH' else nn.InstanceNorm2d(nb_filter[4]),
nn.LeakyReLU() if leaky else nn.ReLU(),
nn.Conv2d(nb_filter[4], nb_filter[4], kernel_size=3, stride=1, padding=2, dilation=2),
nn.GroupNorm(16, nb_filter[4]) if norm == 'GROUP' else nn.BatchNorm2d(nb_filter[4]) if norm == 'BATCH' else nn.InstanceNorm2d(nb_filter[4]),
nn.LeakyReLU() if leaky else nn.ReLU(),
nn.Conv2d(nb_filter[4], nb_filter[4], kernel_size=3, stride=1, padding=5, dilation=5),
nn.GroupNorm(16, nb_filter[4]) if norm == 'GROUP' else nn.BatchNorm2d(nb_filter[4]) if norm == 'BATCH' else nn.InstanceNorm2d(nb_filter[4]),
nn.LeakyReLU() if leaky else nn.ReLU(),
)
else:
self.dilation = nn.Identity()
if out_channels is not None:
self.convds0 = nn.Conv2d(nb_filter[0], out_channels, kernel_size=1, bias=False)
else:
self.convds0 = None
def upsample(self, inputs, target):
return F.interpolate(inputs, size=target.shape[2:], mode='bilinear', align_corners=False)
def extract_features(self, x):
x0, x1, x2, x3, x4 = self.backbone(x)
x4 = self.dilation(x4)
x3_1 = self.conv3_1(torch.cat([x3, self.upsample(x4, x3)], dim=1))
x2_2 = self.conv2_2(torch.cat([x2, self.upsample(x3_1, x2)], dim=1))
x1_3 = self.conv1_3(torch.cat([x1, self.upsample(x2_2, x1)], dim=1))
x0_4 = self.conv0_4(torch.cat([x0, self.upsample(x1_3, x0)], dim=1))
return x4, x0_4
def forward(self, x):
size = x.shape[2:]
x0, x1, x2, x3, x4 = self.backbone(x)
x4 = self.dilation(x4)
x3_1 = self.conv3_1(torch.cat([x3, self.upsample(x4, x3)], dim=1))
x2_2 = self.conv2_2(torch.cat([x2, self.upsample(x3_1, x2)], dim=1))
x1_3 = self.conv1_3(torch.cat([x1, self.upsample(x2_2, x1)], dim=1))
x0_4 = self.conv0_4(torch.cat([x0, self.upsample(x1_3, x0)], dim=1))
if self.convds0 is not None:
x_out = self.convds0(x0_4)
out = F.interpolate(x_out, size=size, mode='bilinear', align_corners=False)
else:
out = x0_4
return out
def freeze(self):
# freeze the network
for p in self.parameters():
p.requires_grad = False
def unfreeze(self):
# unfreeze the network to allow parameter update
for p in self.parameters():
p.requires_grad = True
class PromptAttentionUNet(nn.Module):
def __init__(self,
model_name: str = None,
in_channels: int = 1,
out_channels: int = None,
channels: tuple = (64, 128, 256, 320, 512),
strides: tuple = (2, 2, 2, 2, 2),
use_dropout: bool = False,
norm: str = 'INSTANCE',
leaky: bool = True,
use_dilated_bottleneck: bool = False):
"""
Args:
model_name: timm model name
input_channels: the number of input channels
in_channels: the number of output channels
channels: length-5 tuple, define the number of channels in each stage
strides: tuple, define the stride in each stage
use_dropout: bool, whether to use dropout
norm: str, normalization type
leaky: bool, whether to use leaky relu
"""
super().__init__()
if model_name not in [None, 'none', 'None']:
# use Timm backbone and overrides any other input arguments
self.backbone = TimmBackbone(model_name)
else:
self.backbone = Backbone(input_channels=in_channels, channels=channels, strides=strides,
use_dropout=use_dropout, norm=norm, leaky=leaky)
nb_filter = self.backbone.nb_filter
res_unit = PromptResBlock if nb_filter[-1] <= 512 else PromptResBottleneck
# decoder
self.conv3_1 = res_unit(nb_filter[3] + nb_filter[4], nb_filter[3], use_dropout=use_dropout, norm=norm, leaky=leaky)
self.conv2_2 = res_unit(nb_filter[2] + nb_filter[3], nb_filter[2], use_dropout=use_dropout, norm=norm, leaky=leaky)
self.conv1_3 = res_unit(nb_filter[1] + nb_filter[2], nb_filter[1], use_dropout=use_dropout, norm=norm, leaky=leaky)
self.conv0_4 = res_unit(nb_filter[0] + nb_filter[1], nb_filter[0], use_dropout=use_dropout, norm=norm, leaky=leaky)
# dilated bottleneck: optional
if use_dilated_bottleneck:
self.dilation = nn.Sequential(
nn.Conv2d(nb_filter[4], nb_filter[4], kernel_size=3, stride=1, padding=1, dilation=1),
nn.GroupNorm(16, nb_filter[4]) if norm == 'GROUP' else nn.BatchNorm2d(nb_filter[4]) if norm == 'BATCH' else nn.InstanceNorm2d(nb_filter[4]),
nn.LeakyReLU() if leaky else nn.ReLU(),
nn.Conv2d(nb_filter[4], nb_filter[4], kernel_size=3, stride=1, padding=1, dilation=2),
nn.GroupNorm(16, nb_filter[4]) if norm == 'GROUP' else nn.BatchNorm2d(nb_filter[4]) if norm == 'BATCH' else nn.InstanceNorm2d(nb_filter[4]),
nn.LeakyReLU() if leaky else nn.ReLU(),
nn.Conv2d(nb_filter[4], nb_filter[4], kernel_size=3, stride=1, padding=1, dilation=5),
nn.GroupNorm(16, nb_filter[4]) if norm == 'GROUP' else nn.BatchNorm2d(nb_filter[4]) if norm == 'BATCH' else nn.InstanceNorm2d(nb_filter[4]),
nn.LeakyReLU() if leaky else nn.ReLU(),
nn.Conv2d(nb_filter[4], nb_filter[4], kernel_size=3, stride=1, padding=1, dilation=1),
nn.GroupNorm(16, nb_filter[4]) if norm == 'GROUP' else nn.BatchNorm2d(nb_filter[4]) if norm == 'BATCH' else nn.InstanceNorm2d(nb_filter[4]),
nn.LeakyReLU() if leaky else nn.ReLU(),
nn.Conv2d(nb_filter[4], nb_filter[4], kernel_size=3, stride=1, padding=1, dilation=2),
nn.GroupNorm(16, nb_filter[4]) if norm == 'GROUP' else nn.BatchNorm2d(nb_filter[4]) if norm == 'BATCH' else nn.InstanceNorm2d(nb_filter[4]),
nn.LeakyReLU() if leaky else nn.ReLU(),
nn.Conv2d(nb_filter[4], nb_filter[4], kernel_size=3, stride=1, padding=1, dilation=5),
nn.GroupNorm(16, nb_filter[4]) if norm == 'GROUP' else nn.BatchNorm2d(nb_filter[4]) if norm == 'BATCH' else nn.InstanceNorm2d(nb_filter[4]),
nn.LeakyReLU() if leaky else nn.ReLU(),
)
else:
self.dilation = nn.Identity()
if out_channels is not None:
self.convds0 = nn.Conv2d(nb_filter[0], out_channels, kernel_size=1, bias=False)
def upsample(self, inputs, target):
return F.interpolate(inputs, size=target.shape[2:], mode='bilinear', align_corners=False)
def extract_features(self, x):
x0, x1, x2, x3, x4 = self.backbone(x)
x4 = self.dilation(x4)
x3_1 = self.conv3_1(torch.cat([x3, self.upsample(x4, x3)], dim=1))
x2_2 = self.conv2_2(torch.cat([x2, self.upsample(x3_1, x2)], dim=1))
x1_3 = self.conv1_3(torch.cat([x1, self.upsample(x2_2, x1)], dim=1))
x0_4 = self.conv0_4(torch.cat([x0, self.upsample(x1_3, x0)], dim=1))
return x4, x0_4
def forward(self, x, prompt_in):
size = x.shape[2:]
x0, x1, x2, x3, x4 = self.backbone(x)
x4 = self.dilation(x4)
x3_1 = self.conv3_1(torch.cat([x3, self.upsample(x4, x3)], dim=1), prompt_in)
x2_2 = self.conv2_2(torch.cat([x2, self.upsample(x3_1, x2)], dim=1), prompt_in)
x1_3 = self.conv1_3(torch.cat([x1, self.upsample(x2_2, x1)], dim=1), prompt_in)
x0_4 = self.conv0_4(torch.cat([x0, self.upsample(x1_3, x0)], dim=1), prompt_in)
x_out = self.convds0(x0_4)
out = F.interpolate(x_out, size=size, mode='bilinear', align_corners=False)
return out
def freeze(self):
# freeze the network
for p in self.parameters():
p.requires_grad = False
def unfreeze(self):
# unfreeze the network to allow parameter update
for p in self.parameters():
p.requires_grad = True
class CLIPDrivenUNet(nn.Module):
def __init__(self, encoding: str, model_name: str = None, in_channels: int = 1, out_channels: int = 1, channels: tuple = (32, 64, 128, 256, 512),
strides: tuple = (2, 2, 2, 2, 2), norm: str = 'INSTANCE', leaky: bool = True) -> None:
super().__init__()
self.encoding = encoding
self.num_classes = out_channels
self.backbone = UNet(model_name=model_name, in_channels=in_channels, out_channels=None, channels=channels,
strides=strides, use_dropout=False, norm=norm, leaky=leaky)
self.gap = nn.AdaptiveAvgPool2d(1)
self.precls_conv = nn.Sequential(
nn.InstanceNorm2d(32),
nn.LeakyReLU(),
nn.Conv2d(32, 8, kernel_size=1)
)
self.weight_nums = [8*8, 8*8, 8*1]
self.bias_nums = [8, 8, 1]
self.controller = nn.Conv2d(256 + channels[-1], sum(self.weight_nums + self.bias_nums), kernel_size=1, stride=1, padding=0)
if encoding == 'CLIP':
self.register_buffer('protein_embedding', torch.randn(self.num_classes, 512))
self.text_to_vision = nn.Linear(512, 256)
elif encoding == 'RAND':
self.register_buffer('protein_embedding', torch.randn(self.num_classes, 256))
def parse_dynamic_params(self, params, channels, weight_nums, bias_nums):
assert params.dim() == 2
assert len(weight_nums) == len(bias_nums)
assert params.size(1) == sum(weight_nums) + sum(bias_nums)
num_insts = params.size(0)
num_layers = len(weight_nums)
params_splits = list(torch.split_with_sizes(
params, weight_nums + bias_nums, dim=1
))
weight_splits = params_splits[:num_layers]
bias_splits = params_splits[num_layers:]
for l in range(num_layers):
if l < num_layers - 1:
weight_splits[l] = weight_splits[l].reshape(num_insts * channels, -1, 1, 1)
bias_splits[l] = bias_splits[l].reshape(num_insts * channels)
else:
weight_splits[l] = weight_splits[l].reshape(num_insts * 1, -1, 1, 1)
bias_splits[l] = bias_splits[l].reshape(num_insts * 1)
# print(weight_splits[l].shape, bias_splits[l].shape)
return weight_splits, bias_splits
def heads_forward(self, features, weights, biases, num_insts):
n_layers = len(weights)
x = features
for i, (w, b) in enumerate(zip(weights, biases)):
x = F.conv2d(
x, w, bias=b,
stride=1, padding=0,
groups=num_insts
)
if i < n_layers - 1:
x = F.leaky_relu(x)
return x
def forward(self, x_in):
out_shape = x_in.shape[2:]
dec4, out = self.backbone.extract_features(x_in) # dec4: (B, channels[-1], H, W), out: (B, channels[0], H, W)
if self.encoding == 'RAND':
task_encoding = self.protein_embedding[..., None, None] # (num_classes, 256, 1, 1)
elif self.encoding == 'CLIP':
task_encoding = F.leaky_relu(self.text_to_vision(self.protein_embedding))[..., None, None] # (num_classes, 256, 1, 1)
else:
raise NotImplementedError
x_feat = self.gap(dec4)
b = x_feat.shape[0]
logits_array = []
for i in range(b):
x_cond = torch.cat([x_feat[i].unsqueeze(0).repeat(self.num_classes, 1, 1, 1), task_encoding], 1)
params = self.controller(x_cond) # (num_classes, num_params, 1, 1)
params.squeeze_(-1).squeeze_(-1) # (num_classes, num_params)
head_inputs = self.precls_conv(out[i].unsqueeze(0))
head_inputs = head_inputs.repeat(self.num_classes, 1, 1, 1) # (num_classes, 8, H, W)
N, _, H, W = head_inputs.size()
head_inputs = head_inputs.reshape(1, -1, H, W)
# print(head_inputs.shape, params.shape)
weights, biases = self.parse_dynamic_params(params, 8, self.weight_nums, self.bias_nums)
logits = self.heads_forward(head_inputs, weights, biases, N)
logits_array.append(logits.reshape(1, -1, H, W))
out = torch.cat(logits_array, dim=0)
out = F.interpolate(out, size=out_shape, mode='bilinear', align_corners=False)
# print(out.shape)
return out
class NLayerDiscriminator(nn.Module):
"""Defines a PatchGAN discriminator"""
def __init__(self, input_nc, norm='INSTANCE', ndf=64, n_layers=3):
"""Construct a PatchGAN discriminator
Parameters:
input_nc (int) -- the number of channels in input images
ndf (int) -- the number of filters in the last conv layer
n_layers (int) -- the number of conv layers in the discriminator
norm_layer -- normalization layer
"""
super(NLayerDiscriminator, self).__init__()
norm_layer = norm_dict[norm]
use_bias = norm_layer == nn.InstanceNorm2d
kw = 4
padw = 1
sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
nf_mult = 1
nf_mult_prev = 1
for n in range(1, n_layers): # gradually increase the number of filters
nf_mult_prev = nf_mult
nf_mult = min(2 ** n, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
nf_mult_prev = nf_mult
nf_mult = min(2 ** n_layers, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map
self.model = nn.Sequential(*sequence)
def forward(self, input):
"""Standard forward."""
return self.model(input)
class PatchDiscriminator(nn.Module):
def __init__(self, in_channels, norm_type='INSTANCE'):
super().__init__()
nb_filters = [32, 64, 128, 256, 512]
strides = [2, 2, 2, 2, 2]
self.layer1 = ConvNorm(in_channels=in_channels, out_channels=nb_filters[0], kernel_size=5, stride=strides[0], norm='NONE', leaky=True)
self.layer2 = ConvNorm(in_channels=nb_filters[0], out_channels=nb_filters[1], kernel_size=5, stride=strides[1], norm=norm_type, leaky=True)
self.layer3 = ConvNorm(in_channels=nb_filters[1], out_channels=nb_filters[2], kernel_size=5, stride=strides[2], norm=norm_type, leaky=True)
self.layer4 = ConvNorm(in_channels=nb_filters[2], out_channels=nb_filters[3], kernel_size=5, stride=strides[3], norm=norm_type, leaky=True)
self.layer5 = ConvNorm(in_channels=nb_filters[3], out_channels=nb_filters[4], kernel_size=5, stride=strides[4], norm=norm_type, leaky=True)
self.dense_pred = ConvNorm(in_channels=nb_filters[4], out_channels=1, kernel_size=3, stride=1, norm='NONE', activation=False)
def forward(self, inputs):
x1 = self.layer1(inputs)
x2 = self.layer2(x1)
x3 = self.layer3(x2)
x4 = self.layer4(x3)
x5 = self.layer5(x4)
output = self.dense_pred(x5)
output_list = [x1, x2, x3, x4, x5, output]
return output_list
class PromptPatchDiscriminator(nn.Module):
def __init__(self, in_channels, norm_type='INSTANCE'):
super().__init__()
nb_filters = [32, 64, 128, 256, 512]
strides = [2, 2, 2, 2, 2]
self.layer1 = ConvNorm(in_channels=in_channels, out_channels=nb_filters[0], kernel_size=5, stride=strides[0], norm='NONE', leaky=True)
self.layer2 = ConvNorm(in_channels=nb_filters[0], out_channels=nb_filters[1], kernel_size=5, stride=strides[1], norm=norm_type, leaky=True)
self.layer3 = ConvNorm(in_channels=nb_filters[1], out_channels=nb_filters[2], kernel_size=5, stride=strides[2], norm=norm_type, leaky=True)
self.layer4 = ConvNorm(in_channels=nb_filters[2], out_channels=nb_filters[3], kernel_size=5, stride=strides[3], norm=norm_type, leaky=True)
self.layer5 = ConvNorm(in_channels=nb_filters[3], out_channels=nb_filters[4], kernel_size=5, stride=strides[4], norm=norm_type, leaky=True)
self.attn4 = PromptAttentionModule(in_channels=nb_filters[3], prompt_channels=512, mid_channels=nb_filters[3] // 4)
self.attn5 = PromptAttentionModule(in_channels=nb_filters[4], prompt_channels=512, mid_channels=nb_filters[4] // 4)
self.dense_pred = ConvNorm(in_channels=nb_filters[4], out_channels=1, kernel_size=3, stride=1, norm='NONE', activation=False)
def forward(self, inputs, prompt_in):
x1 = self.layer1(inputs)
x2 = self.layer2(x1)
x3 = self.layer3(x2)
x4 = self.layer4(x3)
x4 = self.attn4(x4, prompt_in)
x5 = self.layer5(x4)
x5 = self.attn5(x5, prompt_in)
output = self.dense_pred(x5)
output_list = [x1, x2, x3, x4, x5, output]
return output_list
class MultiScaleDiscriminator(nn.Module):
def __init__(self, in_channels, norm='INSTANCE', num_D=3):
super(MultiScaleDiscriminator, self).__init__()
self.num_D = num_D
module = PatchDiscriminator
for i in range(num_D):
netD = module(in_channels, norm)
setattr(self, 'layer' + str(i), netD)
self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)
def singleD_forward(self, model, input):
return model(input)
def forward(self, input):
num_D = self.num_D
result = []
input_downsampled = input
for i in range(num_D):
model = getattr(self, 'layer' + str(num_D - 1 - i))
result.append(self.singleD_forward(model, input_downsampled))
if i != (num_D - 1):
input_downsampled = self.downsample(input_downsampled)
return result
class PromptMultiScaleDiscriminator(nn.Module):
def __init__(self, in_channels, norm='INSTANCE', num_D=3):
super(PromptMultiScaleDiscriminator, self).__init__()
self.num_D = num_D
module = PromptPatchDiscriminator
for i in range(num_D):
netD = module(in_channels, norm)
setattr(self, 'layer' + str(i), netD)
self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)
def singleD_forward(self, model, input, prompt_in):
return model(input, prompt_in)
def forward(self, input, prompt_in):
num_D = self.num_D
result = []
input_downsampled = input
for i in range(num_D):
model = getattr(self, 'layer' + str(num_D - 1 - i))
result.append(self.singleD_forward(model, input_downsampled, prompt_in))
if i != (num_D - 1):
input_downsampled = self.downsample(input_downsampled)
return result
class HighResEnhancer(nn.Module):
"""
Design a global-local network for high res generation and enhance boundary information.
"""
def __init__(self,
model_name: str = None,
in_channels: int = 1,
out_channels: int = None,
coarse_channels: tuple = (16, 32, 64, 128, 256),
channels: tuple = (32, 64, 128, 256, 512),
use_dropout: bool = False,
norm: str = 'INSTANCE',
leaky: bool = True,
use_dilated_bottleneck: bool = False):
super().__init__()
# define basic blocks
self.norm = norm
self.leaky = leaky
norm_layer = self.get_norm_layer()
act_layer = self.get_act_layer()
res_unit = ResBlock if channels[-1] <= 512 else ResBottleneck
# check input channels
assert channels[1] == coarse_channels[2], 'The number of channel-2 for coarse and number of channel-1 for fine branch should be the same.'
# downsample and edge information extraction:
# the downsample operation provides the input for coarse branch
self.downsample = nn.AvgPool2d(3, stride=2, padding=1)
# the sobel filter is operated on the downsampled image to provide edge information
self.sobel = SobelEdge(input_dim=2, channels=in_channels)
self.sobel_conv = nn.Sequential(
nn.Conv2d(in_channels, channels[0], kernel_size=3, stride=2, padding=1),
norm_layer(channels[0]),
act_layer()
)
# coarse generator: in_channels -> coarse_channels[2]
# input stride: 0
# output stride: 4 (as input is already 2x downsampled)
self.coarse = nn.Sequential(
nn.Conv2d(in_channels, coarse_channels[0], kernel_size=3, stride=2, padding=1),
norm_layer(coarse_channels[0]),
act_layer(),
res_unit(coarse_channels[0], coarse_channels[1], stride=2),
res_unit(coarse_channels[1], coarse_channels[2], stride=2),
res_unit(coarse_channels[2], coarse_channels[3], stride=2),
res_unit(coarse_channels[3], coarse_channels[4], stride=1),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
res_unit(coarse_channels[4], coarse_channels[3], stride=1),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
res_unit(coarse_channels[3], coarse_channels[2], stride=1),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
res_unit(coarse_channels[2], coarse_channels[2], stride=1),
)
# fine generator: used to enhance the generation for better details
# 1. simple encoder: channels[0] -> channels[1]
# input stride: 0
# output stride: 4
self.fine_encoder = nn.Sequential(
nn.Conv2d(in_channels, channels[0], kernel_size=3, stride=2, padding=1),
norm_layer(channels[0]),
act_layer(),
nn.Conv2d(channels[0], channels[1], kernel_size=3, stride=2, padding=1),
norm_layer(channels[1]),
act_layer()
)
# 2. bottleneck: channels[1] -> channels[4]
# input stride: 4
# output stride: 16
self.bottleneck = nn.Sequential(
res_unit(channels[1], channels[2], stride=2),
res_unit(channels[2], channels[3], stride=2),
res_unit(channels[3], channels[4], stride=1),
res_unit(channels[4], channels[4], stride=1),
)
if use_dilated_bottleneck:
self.bottleneck.add_module('dilated_block_1',
nn.Sequential(
nn.Conv2d(channels[4], channels[4], kernel_size=3, stride=1, padding=1, dilation=1),
norm_layer(channels[4]),
act_layer()
))
self.bottleneck.add_module('dilated_block_2',
nn.Sequential(
nn.Conv2d(channels[4], channels[4], kernel_size=3, stride=1, padding=2, dilation=2),
norm_layer(channels[4]),
act_layer()
))
self.bottleneck.add_module('dilated_block_3',
nn.Sequential(
nn.Conv2d(channels[4], channels[4], kernel_size=3, stride=1, padding=5, dilation=5),
norm_layer(channels[4]),
act_layer()
))
self.bottleneck.add_module('dilated_block_4',
nn.Sequential(
nn.Conv2d(channels[4], channels[4], kernel_size=3, stride=1, padding=1, dilation=1),
norm_layer(channels[4]),
act_layer()
))
self.bottleneck.add_module('dilated_block_5',
nn.Sequential(
nn.Conv2d(channels[4], channels[4], kernel_size=3, stride=1, padding=2, dilation=2),
norm_layer(channels[4]),
act_layer()
))
self.bottleneck.add_module('dilated_block_6',
nn.Sequential(
nn.Conv2d(channels[4], channels[4], kernel_size=3, stride=1, padding=5, dilation=5),
norm_layer(channels[4]),
act_layer()
))
# 3. simple decoder: channels[4] -> channels[0]
# input stride: 16
# output stride: 2
self.decoder = nn.Sequential(
res_unit(channels[4], channels[3], stride=1),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
res_unit(channels[3], channels[2], stride=1),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
res_unit(channels[2], channels[1], stride=1),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
res_unit(channels[1], channels[0], stride=1),
)
# output operation that combines both feature branch and edge branch
# input stride: 2
# output stride: 0
self.output = nn.Sequential(
nn.Conv2d(2 * channels[0], channels[0], kernel_size=3, stride=1, padding=1),
norm_layer(channels[0]),
act_layer(),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
nn.Conv2d(channels[0], out_channels, kernel_size=1, stride=1, bias=False)
)
def get_norm_layer(self):
if self.norm == 'INSTANCE':
return partial(nn.InstanceNorm2d, affine=False)
elif self.norm == 'BATCH':
return partial(nn.BatchNorm2d, affine=True, track_running_stats=True)
elif self.norm == 'GROUP':
return partial(nn.GroupNorm, num_groups=8)
else:
raise NotImplementedError(f'Normalization layer {self.norm} is not implemented.')
def get_act_layer(self):
if self.leaky:
return partial(nn.LeakyReLU, inplace=False)
else:
return partial(nn.ReLU, inplace=False)
def forward(self, inputs):
"""
Args:
inputs: (B, C, H, W), input IMC image
"""
# downsample and edge information extraction
downsampled = self.downsample(inputs) # 0 -> 2x stride
edge = self.sobel(inputs)
edge = self.sobel_conv(edge)
# coarse generator
coarse = self.coarse(downsampled) # 2x stride -> 4x stride
# fine generator
fine = self.fine_encoder(inputs) # 0x stride -> 4x stride
# add coarse and fine information together
fine = self.bottleneck(fine + coarse) # 4x stride -> 16x stride
fine = self.decoder(fine) # 16x stride -> 2x stride
# output operation
output = self.output(torch.cat([edge, fine], dim=1))
return output |