Upload 2 files
Browse files- Dockerfile +16 -8
- main.py +20 -18
Dockerfile
CHANGED
@@ -1,13 +1,21 @@
|
|
1 |
-
FROM python:3.10
|
2 |
|
3 |
-
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
12 |
|
|
|
|
|
|
|
|
|
13 |
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
|
1 |
+
FROM python:3.10
|
2 |
|
3 |
+
# Set working directory
|
4 |
+
WORKDIR /app
|
5 |
|
6 |
+
# Copy local files
|
7 |
+
COPY . .
|
8 |
|
9 |
+
# Install Python dependencies
|
10 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
11 |
+
|
12 |
+
# Set Hugging Face cache directory to writable one
|
13 |
+
ENV HF_HOME=/data
|
14 |
+
RUN mkdir -p /data && chmod 777 /data
|
15 |
|
16 |
+
# Expose the port
|
17 |
+
EXPOSE 7860
|
18 |
+
|
19 |
+
# Run the FastAPI app with Uvicorn
|
20 |
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
21 |
+
|
main.py
CHANGED
@@ -1,25 +1,27 @@
|
|
1 |
-
from fastapi import FastAPI, Request
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
-
import torch
|
4 |
import os
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
app = FastAPI()
|
9 |
|
10 |
model_name = "howtomakepplragequit/phi2-lora-instruct"
|
|
|
|
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
-
model = AutoModelForCausalLM.from_pretrained(
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
18 |
|
19 |
@app.post("/generate")
|
20 |
-
|
21 |
-
data =
|
22 |
-
|
23 |
-
formatted = f"### Instruction:\n{prompt}\n\n### Response:\n"
|
24 |
-
result = pipe(formatted, max_new_tokens=200)[0]["generated_text"]
|
25 |
-
return {"response": result.split("### Response:")[-1].strip()}
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
from fastapi import FastAPI
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
5 |
|
6 |
+
# Force Hugging Face cache to a writable dir
|
7 |
+
os.environ["HF_HOME"] = "/data"
|
|
|
8 |
|
9 |
model_name = "howtomakepplragequit/phi2-lora-instruct"
|
10 |
+
|
11 |
+
# Load tokenizer and model
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
14 |
+
|
15 |
+
# Create pipeline
|
16 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
17 |
+
|
18 |
+
# FastAPI app setup
|
19 |
+
app = FastAPI()
|
20 |
+
|
21 |
+
class Prompt(BaseModel):
|
22 |
+
prompt: str
|
23 |
|
24 |
@app.post("/generate")
|
25 |
+
def generate_text(data: Prompt):
|
26 |
+
output = generator(data.prompt, max_length=200, do_sample=True)[0]["generated_text"]
|
27 |
+
return {"response": output}
|
|
|
|
|
|