File size: 16,924 Bytes
c295391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# MIT License

# Copyright (c) Microsoft

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# Copyright (c) [2025] [Microsoft]
# Copyright (c) [2025] [jclarkk] 
# Copyright (c) [2025] [Chongjie Ye] 
# SPDX-License-Identifier: MIT
# This file has been modified by Chongjie Ye on 2025/04/10
#
# Original file was released under MIT, with the full license text
# available at https://github.com/atong01/conditional-flow-matching/blob/1.0.7/LICENSE.
#
# This modified file is released under the same license.
import torch
from ...modules.sparse import SparseTensor
from .utils_cube import *
import numpy as np
import trimesh
import numpy as np
from skimage import measure
from typing import Tuple, Optional

class MeshExtractResult:
    def __init__(self,
        vertices,
        faces,
        vertex_attrs=None,
        res=64
    ):
        self.vertices = vertices
        self.faces = faces.long()
        self.vertex_attrs = vertex_attrs
        self.vertex_normal = self.comput_v_normals(vertices, faces)
        self.face_normal = self.comput_face_normals(vertices, faces)
        self.res = res
        self.success = (vertices.shape[0] != 0 and faces.shape[0] != 0)

        # training only
        self.tsdf_v = None
        self.tsdf_s = None
        self.reg_loss = None
        
    def comput_face_normals(self, verts, faces):
        i0 = faces[..., 0].long()
        i1 = faces[..., 1].long()
        i2 = faces[..., 2].long()

        v0 = verts[i0, :]
        v1 = verts[i1, :]
        v2 = verts[i2, :]
        face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
        face_normals = torch.nn.functional.normalize(face_normals, dim=1)
        # print(face_normals.min(), face_normals.max(), face_normals.shape)
        return face_normals[:, None, :].repeat(1, 3, 1)
                
    def comput_v_normals(self, verts, faces):
        i0 = faces[..., 0].long()
        i1 = faces[..., 1].long()
        i2 = faces[..., 2].long()

        v0 = verts[i0, :]
        v1 = verts[i1, :]
        v2 = verts[i2, :]
        face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
        v_normals = torch.zeros_like(verts)
        v_normals.scatter_add_(0, i0[..., None].repeat(1, 3), face_normals)
        v_normals.scatter_add_(0, i1[..., None].repeat(1, 3), face_normals)
        v_normals.scatter_add_(0, i2[..., None].repeat(1, 3), face_normals)

        v_normals = torch.nn.functional.normalize(v_normals, dim=1)
        return v_normals   
    
    def to_trimesh(self, transform_pose=False):
        vertices = self.vertices.detach().cpu().numpy()
        faces = self.faces.detach().cpu().numpy()
        
        if transform_pose:
            transform_matrix = np.array([
                [1, 0, 0],
                [0, 0, -1],
                [0, 1, 0]
            ])
            vertices = vertices @ transform_matrix
            vertex_normals = self.vertex_normal.detach().cpu().numpy() @ transform_matrix
        else:
            vertex_normals = self.vertex_normal.detach().cpu().numpy()
        
        # Create the trimesh mesh
        mesh = trimesh.Trimesh(
            vertices=vertices,
            faces=faces,
            face_normals=self.face_normal.detach().cpu().numpy(),
            vertex_normals=vertex_normals
        )
        
        return mesh

class EnhancedMarchingCubes:
    def __init__(self, device="cuda"):
        self.device = device

    def __call__(self,
                 voxelgrid_vertices: torch.Tensor,
                 scalar_field: torch.Tensor,
                 voxelgrid_colors: Optional[torch.Tensor] = None,
                 training: bool = False
                 ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        """
        Enhanced Marching Cubes implementation that handles deformations and colors
        """
        if scalar_field.dim() == 1:
            grid_size = int(round(scalar_field.shape[0] ** (1 / 3)))
            scalar_field = scalar_field.reshape(grid_size, grid_size, grid_size)
        elif scalar_field.dim() > 3:
            scalar_field = scalar_field.squeeze()

        # Convert to numpy and ensure values are in correct range
        scalar_np = scalar_field.cpu().numpy()

        if scalar_np.ndim != 3:
            raise ValueError(f"Expected 3D array, got shape {scalar_np.shape}")

        # Run marching cubes with normalized coordinates
        vertices, faces, normals, _ = measure.marching_cubes(
            scalar_np,
            level=0.0,
            gradient_direction='ascent'
        )

        vertices = torch.from_numpy(np.ascontiguousarray(vertices)).float().to(self.device)
        faces = torch.from_numpy(np.ascontiguousarray(faces)).long().to(self.device)

        # Apply deformations
        if voxelgrid_vertices is not None:
            # Reshape and normalize voxelgrid_vertices if needed
            if voxelgrid_vertices.dim() == 2:
                voxelgrid_vertices = voxelgrid_vertices.reshape(grid_size, grid_size, grid_size, 3)
            deformed_vertices = self._apply_deformations(vertices, voxelgrid_vertices)
        else:
            deformed_vertices = vertices

        # Handle colors if provided
        colors = None
        if voxelgrid_colors is not None:
            if voxelgrid_colors.dim() == 2:
                voxelgrid_colors = voxelgrid_colors.reshape(grid_size, grid_size, grid_size, -1)
            colors = self._interpolate_colors(vertices, voxelgrid_colors)
            # Ensure colors are in [0, 1] range
            colors = torch.sigmoid(colors)

        # Compute deviation loss for training
        deviation_loss = torch.tensor(0.0, device=self.device)
        if training:
            deviation_loss = self._compute_deviation_loss(vertices, deformed_vertices)

        faces = faces.flip(dims=[1])  # Reverse the order of vertices in each face, for some reason it's reversed...

        return deformed_vertices, faces, deviation_loss, colors

    def _apply_deformations(self, vertices: torch.Tensor,
                            voxelgrid_vertices: torch.Tensor) -> torch.Tensor:
        """Apply deformations to vertices using trilinear interpolation"""

        grid_positions = vertices.clone()

        # Scale to grid coordinates
        grid_coords = grid_positions.long()
        local_coords = grid_positions - grid_coords.float()

        # Reshape voxelgrid_vertices if needed
        if voxelgrid_vertices.dim() == 2:
            # Assuming voxelgrid_vertices is [N, 3]
            grid_size = int(round(voxelgrid_vertices.shape[0] ** (1 / 3)))
            voxelgrid_vertices = voxelgrid_vertices.reshape(grid_size, grid_size, grid_size, 3)

        # Ensure coordinates are within bounds
        grid_coords = torch.clamp(grid_coords, 0, voxelgrid_vertices.shape[0] - 1)

        # Perform trilinear interpolation
        deformed_vertices = self._trilinear_interpolate(
            grid_coords, local_coords, voxelgrid_vertices
        )

        return deformed_vertices

    def _interpolate_colors(self, vertices: torch.Tensor,
                            voxelgrid_colors: torch.Tensor) -> torch.Tensor:
        """Interpolate colors for vertices"""

        # Get grid positions
        grid_positions = vertices.clone()

        # Scale to grid coordinates
        grid_coords = grid_positions.long()
        local_coords = grid_positions - grid_coords.float()

        # Reshape colors if they're in 2D format
        if voxelgrid_colors.dim() == 2:
            grid_size = int(round(voxelgrid_colors.shape[0] ** (1 / 3)))
            color_channels = voxelgrid_colors.shape[1]
            voxelgrid_colors = voxelgrid_colors.reshape(grid_size, grid_size, grid_size, color_channels)

        # Ensure coordinates are within bounds
        grid_coords = torch.clamp(grid_coords, 0, voxelgrid_colors.shape[0] - 1)

        # Perform trilinear interpolation
        return self._trilinear_interpolate(
            grid_coords, local_coords, voxelgrid_colors, is_color=True
        )

    def _trilinear_interpolate(self, grid_coords: torch.Tensor,
                               local_coords: torch.Tensor,
                               values: torch.Tensor,
                               is_color: bool = False) -> torch.Tensor:
        """Perform trilinear interpolation"""
        x, y, z = local_coords[:, 0], local_coords[:, 1], local_coords[:, 2]

        if is_color and values.dim() == 2:
            # Handle flat color array
            grid_size = int(round(values.shape[0] ** (1 / 3)))
            color_channels = values.shape[1]
            values = values.reshape(grid_size, grid_size, grid_size, color_channels)

        # Get corner values with proper indexing based on dimensionality
        if values.dim() == 4:  # For 4D tensors (grid x grid x grid x channels)
            c000 = values[grid_coords[:, 0], grid_coords[:, 1], grid_coords[:, 2], :]
            c001 = values[grid_coords[:, 0], grid_coords[:, 1],
                   torch.clamp(grid_coords[:, 2] + 1, 0, values.shape[2] - 1), :]
            c010 = values[grid_coords[:, 0], torch.clamp(grid_coords[:, 1] + 1, 0, values.shape[1] - 1),
                   grid_coords[:, 2], :]
            c011 = values[grid_coords[:, 0], torch.clamp(grid_coords[:, 1] + 1, 0, values.shape[1] - 1),
                   torch.clamp(grid_coords[:, 2] + 1, 0, values.shape[2] - 1), :]
            c100 = values[torch.clamp(grid_coords[:, 0] + 1, 0, values.shape[0] - 1), grid_coords[:, 1],
                   grid_coords[:, 2], :]
            c101 = values[torch.clamp(grid_coords[:, 0] + 1, 0, values.shape[0] - 1), grid_coords[:, 1],
                   torch.clamp(grid_coords[:, 2] + 1, 0, values.shape[2] - 1), :]
            c110 = values[torch.clamp(grid_coords[:, 0] + 1, 0, values.shape[0] - 1),
                   torch.clamp(grid_coords[:, 1] + 1, 0, values.shape[1] - 1), grid_coords[:, 2], :]
            c111 = values[torch.clamp(grid_coords[:, 0] + 1, 0, values.shape[0] - 1),
                   torch.clamp(grid_coords[:, 1] + 1, 0, values.shape[1] - 1),
                   torch.clamp(grid_coords[:, 2] + 1, 0, values.shape[2] - 1), :]
        else:
            c000 = values[grid_coords[:, 0], grid_coords[:, 1], grid_coords[:, 2]]
            c001 = values[
                grid_coords[:, 0], grid_coords[:, 1], torch.clamp(grid_coords[:, 2] + 1, 0, values.shape[2] - 1)]
            c010 = values[
                grid_coords[:, 0], torch.clamp(grid_coords[:, 1] + 1, 0, values.shape[1] - 1), grid_coords[:, 2]]
            c011 = values[grid_coords[:, 0], torch.clamp(grid_coords[:, 1] + 1, 0, values.shape[1] - 1), torch.clamp(
                grid_coords[:, 2] + 1, 0, values.shape[2] - 1)]
            c100 = values[
                torch.clamp(grid_coords[:, 0] + 1, 0, values.shape[0] - 1), grid_coords[:, 1], grid_coords[:, 2]]
            c101 = values[torch.clamp(grid_coords[:, 0] + 1, 0, values.shape[0] - 1), grid_coords[:, 1], torch.clamp(
                grid_coords[:, 2] + 1, 0, values.shape[2] - 1)]
            c110 = values[
                torch.clamp(grid_coords[:, 0] + 1, 0, values.shape[0] - 1), torch.clamp(grid_coords[:, 1] + 1, 0,
                                                                                        values.shape[
                                                                                            1] - 1), grid_coords[:, 2]]
            c111 = values[
                torch.clamp(grid_coords[:, 0] + 1, 0, values.shape[0] - 1), torch.clamp(grid_coords[:, 1] + 1, 0,
                                                                                        values.shape[
                                                                                            1] - 1), torch.clamp(
                    grid_coords[:, 2] + 1, 0, values.shape[2] - 1)]

        # Add channel dimension for 3D tensors if needed
        if values.dim() == 3:
            c000, c001, c010, c011 = [c[..., None] if c.dim() == 1 else c for c in [c000, c001, c010, c011]]
            c100, c101, c110, c111 = [c[..., None] if c.dim() == 1 else c for c in [c100, c101, c110, c111]]

        # Interpolate along x
        c00 = c000 * (1 - x)[:, None] + c100 * x[:, None]
        c01 = c001 * (1 - x)[:, None] + c101 * x[:, None]
        c10 = c010 * (1 - x)[:, None] + c110 * x[:, None]
        c11 = c011 * (1 - x)[:, None] + c111 * x[:, None]

        # Interpolate along y
        c0 = c00 * (1 - y)[:, None] + c10 * y[:, None]
        c1 = c01 * (1 - y)[:, None] + c11 * y[:, None]

        # Interpolate along z
        return c0 * (1 - z)[:, None] + c1 * z[:, None]

    def _compute_deviation_loss(self, original_vertices: torch.Tensor,
                                deformed_vertices: torch.Tensor) -> torch.Tensor:
        """Compute deviation loss for training"""
        return torch.mean((deformed_vertices - original_vertices) ** 2)

class SparseFeatures2Mesh:
    def __init__(self, device="cuda", res=128, use_color=True):
        super().__init__()
        self.device = device
        self.res = res
        self.mesh_extractor = EnhancedMarchingCubes(device=device)
        self.sdf_bias = -1.0 / res
        verts, cube = construct_dense_grid(self.res, self.device)
        self.reg_c = cube.to(self.device)
        self.reg_v = verts.to(self.device)
        self.use_color = use_color
        self._calc_layout()

    def _calc_layout(self):
        LAYOUTS = {
            'sdf': {'shape': (8, 1), 'size': 8},
            'deform': {'shape': (8, 3), 'size': 8 * 3},
            'weights': {'shape': (21,), 'size': 21}
        }
        if self.use_color:
            '''
            6 channel color including normal map
            '''
            LAYOUTS['color'] = {'shape': (8, 6,), 'size': 8 * 6}
        self.layouts = LAYOUTS
        start = 0
        for k, v in self.layouts.items():
            v['range'] = (start, start + v['size'])
            start += v['size']
        self.feats_channels = start

    def get_layout(self, feats: torch.Tensor, name: str):
        if name not in self.layouts:
            return None
        return feats[:, self.layouts[name]['range'][0]:self.layouts[name]['range'][1]].reshape(-1, *self.layouts[name][
            'shape'])

    def __call__(self, cubefeats: SparseTensor, training=False):
        coords = cubefeats.coords[:, 1:]
        feats = cubefeats.feats

        sdf, deform, color, weights = [self.get_layout(feats, name)
                                       for name in ['sdf', 'deform', 'color', 'weights']]
        sdf += self.sdf_bias
        v_attrs = [sdf, deform, color] if self.use_color else [sdf, deform]
        v_pos, v_attrs, reg_loss = sparse_cube2verts(coords, torch.cat(v_attrs, dim=-1),
                                                     training=training)

        v_attrs_d = get_dense_attrs(v_pos, v_attrs, res=self.res + 1, sdf_init=True)

        if self.use_color:
            sdf_d, deform_d, colors_d = (v_attrs_d[..., 0], v_attrs_d[..., 1:4],
                                         v_attrs_d[..., 4:])
        else:
            sdf_d, deform_d = v_attrs_d[..., 0], v_attrs_d[..., 1:4]
            colors_d = None

        x_nx3 = get_defomed_verts(self.reg_v, deform_d, self.res)

        vertices, faces, L_dev, colors = self.mesh_extractor(
            voxelgrid_vertices=x_nx3,
            scalar_field=sdf_d,
            voxelgrid_colors=colors_d,
            training=training
        )

        mesh = MeshExtractResult(vertices=vertices, faces=faces,
                                 vertex_attrs=colors, res=self.res)

        if training:
            if mesh.success:
                reg_loss += L_dev.mean() * 0.5
            reg_loss += (weights[:, :20]).abs().mean() * 0.2
            mesh.reg_loss = reg_loss
            mesh.tsdf_v = get_defomed_verts(v_pos, v_attrs[:, 1:4], self.res)
            mesh.tsdf_s = v_attrs[:, 0]

        return mesh