Spaces:
Runtime error
Runtime error
File size: 16,924 Bytes
c295391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
# MIT License
# Copyright (c) Microsoft
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Copyright (c) [2025] [Microsoft]
# Copyright (c) [2025] [jclarkk]
# Copyright (c) [2025] [Chongjie Ye]
# SPDX-License-Identifier: MIT
# This file has been modified by Chongjie Ye on 2025/04/10
#
# Original file was released under MIT, with the full license text
# available at https://github.com/atong01/conditional-flow-matching/blob/1.0.7/LICENSE.
#
# This modified file is released under the same license.
import torch
from ...modules.sparse import SparseTensor
from .utils_cube import *
import numpy as np
import trimesh
import numpy as np
from skimage import measure
from typing import Tuple, Optional
class MeshExtractResult:
def __init__(self,
vertices,
faces,
vertex_attrs=None,
res=64
):
self.vertices = vertices
self.faces = faces.long()
self.vertex_attrs = vertex_attrs
self.vertex_normal = self.comput_v_normals(vertices, faces)
self.face_normal = self.comput_face_normals(vertices, faces)
self.res = res
self.success = (vertices.shape[0] != 0 and faces.shape[0] != 0)
# training only
self.tsdf_v = None
self.tsdf_s = None
self.reg_loss = None
def comput_face_normals(self, verts, faces):
i0 = faces[..., 0].long()
i1 = faces[..., 1].long()
i2 = faces[..., 2].long()
v0 = verts[i0, :]
v1 = verts[i1, :]
v2 = verts[i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
face_normals = torch.nn.functional.normalize(face_normals, dim=1)
# print(face_normals.min(), face_normals.max(), face_normals.shape)
return face_normals[:, None, :].repeat(1, 3, 1)
def comput_v_normals(self, verts, faces):
i0 = faces[..., 0].long()
i1 = faces[..., 1].long()
i2 = faces[..., 2].long()
v0 = verts[i0, :]
v1 = verts[i1, :]
v2 = verts[i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
v_normals = torch.zeros_like(verts)
v_normals.scatter_add_(0, i0[..., None].repeat(1, 3), face_normals)
v_normals.scatter_add_(0, i1[..., None].repeat(1, 3), face_normals)
v_normals.scatter_add_(0, i2[..., None].repeat(1, 3), face_normals)
v_normals = torch.nn.functional.normalize(v_normals, dim=1)
return v_normals
def to_trimesh(self, transform_pose=False):
vertices = self.vertices.detach().cpu().numpy()
faces = self.faces.detach().cpu().numpy()
if transform_pose:
transform_matrix = np.array([
[1, 0, 0],
[0, 0, -1],
[0, 1, 0]
])
vertices = vertices @ transform_matrix
vertex_normals = self.vertex_normal.detach().cpu().numpy() @ transform_matrix
else:
vertex_normals = self.vertex_normal.detach().cpu().numpy()
# Create the trimesh mesh
mesh = trimesh.Trimesh(
vertices=vertices,
faces=faces,
face_normals=self.face_normal.detach().cpu().numpy(),
vertex_normals=vertex_normals
)
return mesh
class EnhancedMarchingCubes:
def __init__(self, device="cuda"):
self.device = device
def __call__(self,
voxelgrid_vertices: torch.Tensor,
scalar_field: torch.Tensor,
voxelgrid_colors: Optional[torch.Tensor] = None,
training: bool = False
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
"""
Enhanced Marching Cubes implementation that handles deformations and colors
"""
if scalar_field.dim() == 1:
grid_size = int(round(scalar_field.shape[0] ** (1 / 3)))
scalar_field = scalar_field.reshape(grid_size, grid_size, grid_size)
elif scalar_field.dim() > 3:
scalar_field = scalar_field.squeeze()
# Convert to numpy and ensure values are in correct range
scalar_np = scalar_field.cpu().numpy()
if scalar_np.ndim != 3:
raise ValueError(f"Expected 3D array, got shape {scalar_np.shape}")
# Run marching cubes with normalized coordinates
vertices, faces, normals, _ = measure.marching_cubes(
scalar_np,
level=0.0,
gradient_direction='ascent'
)
vertices = torch.from_numpy(np.ascontiguousarray(vertices)).float().to(self.device)
faces = torch.from_numpy(np.ascontiguousarray(faces)).long().to(self.device)
# Apply deformations
if voxelgrid_vertices is not None:
# Reshape and normalize voxelgrid_vertices if needed
if voxelgrid_vertices.dim() == 2:
voxelgrid_vertices = voxelgrid_vertices.reshape(grid_size, grid_size, grid_size, 3)
deformed_vertices = self._apply_deformations(vertices, voxelgrid_vertices)
else:
deformed_vertices = vertices
# Handle colors if provided
colors = None
if voxelgrid_colors is not None:
if voxelgrid_colors.dim() == 2:
voxelgrid_colors = voxelgrid_colors.reshape(grid_size, grid_size, grid_size, -1)
colors = self._interpolate_colors(vertices, voxelgrid_colors)
# Ensure colors are in [0, 1] range
colors = torch.sigmoid(colors)
# Compute deviation loss for training
deviation_loss = torch.tensor(0.0, device=self.device)
if training:
deviation_loss = self._compute_deviation_loss(vertices, deformed_vertices)
faces = faces.flip(dims=[1]) # Reverse the order of vertices in each face, for some reason it's reversed...
return deformed_vertices, faces, deviation_loss, colors
def _apply_deformations(self, vertices: torch.Tensor,
voxelgrid_vertices: torch.Tensor) -> torch.Tensor:
"""Apply deformations to vertices using trilinear interpolation"""
grid_positions = vertices.clone()
# Scale to grid coordinates
grid_coords = grid_positions.long()
local_coords = grid_positions - grid_coords.float()
# Reshape voxelgrid_vertices if needed
if voxelgrid_vertices.dim() == 2:
# Assuming voxelgrid_vertices is [N, 3]
grid_size = int(round(voxelgrid_vertices.shape[0] ** (1 / 3)))
voxelgrid_vertices = voxelgrid_vertices.reshape(grid_size, grid_size, grid_size, 3)
# Ensure coordinates are within bounds
grid_coords = torch.clamp(grid_coords, 0, voxelgrid_vertices.shape[0] - 1)
# Perform trilinear interpolation
deformed_vertices = self._trilinear_interpolate(
grid_coords, local_coords, voxelgrid_vertices
)
return deformed_vertices
def _interpolate_colors(self, vertices: torch.Tensor,
voxelgrid_colors: torch.Tensor) -> torch.Tensor:
"""Interpolate colors for vertices"""
# Get grid positions
grid_positions = vertices.clone()
# Scale to grid coordinates
grid_coords = grid_positions.long()
local_coords = grid_positions - grid_coords.float()
# Reshape colors if they're in 2D format
if voxelgrid_colors.dim() == 2:
grid_size = int(round(voxelgrid_colors.shape[0] ** (1 / 3)))
color_channels = voxelgrid_colors.shape[1]
voxelgrid_colors = voxelgrid_colors.reshape(grid_size, grid_size, grid_size, color_channels)
# Ensure coordinates are within bounds
grid_coords = torch.clamp(grid_coords, 0, voxelgrid_colors.shape[0] - 1)
# Perform trilinear interpolation
return self._trilinear_interpolate(
grid_coords, local_coords, voxelgrid_colors, is_color=True
)
def _trilinear_interpolate(self, grid_coords: torch.Tensor,
local_coords: torch.Tensor,
values: torch.Tensor,
is_color: bool = False) -> torch.Tensor:
"""Perform trilinear interpolation"""
x, y, z = local_coords[:, 0], local_coords[:, 1], local_coords[:, 2]
if is_color and values.dim() == 2:
# Handle flat color array
grid_size = int(round(values.shape[0] ** (1 / 3)))
color_channels = values.shape[1]
values = values.reshape(grid_size, grid_size, grid_size, color_channels)
# Get corner values with proper indexing based on dimensionality
if values.dim() == 4: # For 4D tensors (grid x grid x grid x channels)
c000 = values[grid_coords[:, 0], grid_coords[:, 1], grid_coords[:, 2], :]
c001 = values[grid_coords[:, 0], grid_coords[:, 1],
torch.clamp(grid_coords[:, 2] + 1, 0, values.shape[2] - 1), :]
c010 = values[grid_coords[:, 0], torch.clamp(grid_coords[:, 1] + 1, 0, values.shape[1] - 1),
grid_coords[:, 2], :]
c011 = values[grid_coords[:, 0], torch.clamp(grid_coords[:, 1] + 1, 0, values.shape[1] - 1),
torch.clamp(grid_coords[:, 2] + 1, 0, values.shape[2] - 1), :]
c100 = values[torch.clamp(grid_coords[:, 0] + 1, 0, values.shape[0] - 1), grid_coords[:, 1],
grid_coords[:, 2], :]
c101 = values[torch.clamp(grid_coords[:, 0] + 1, 0, values.shape[0] - 1), grid_coords[:, 1],
torch.clamp(grid_coords[:, 2] + 1, 0, values.shape[2] - 1), :]
c110 = values[torch.clamp(grid_coords[:, 0] + 1, 0, values.shape[0] - 1),
torch.clamp(grid_coords[:, 1] + 1, 0, values.shape[1] - 1), grid_coords[:, 2], :]
c111 = values[torch.clamp(grid_coords[:, 0] + 1, 0, values.shape[0] - 1),
torch.clamp(grid_coords[:, 1] + 1, 0, values.shape[1] - 1),
torch.clamp(grid_coords[:, 2] + 1, 0, values.shape[2] - 1), :]
else:
c000 = values[grid_coords[:, 0], grid_coords[:, 1], grid_coords[:, 2]]
c001 = values[
grid_coords[:, 0], grid_coords[:, 1], torch.clamp(grid_coords[:, 2] + 1, 0, values.shape[2] - 1)]
c010 = values[
grid_coords[:, 0], torch.clamp(grid_coords[:, 1] + 1, 0, values.shape[1] - 1), grid_coords[:, 2]]
c011 = values[grid_coords[:, 0], torch.clamp(grid_coords[:, 1] + 1, 0, values.shape[1] - 1), torch.clamp(
grid_coords[:, 2] + 1, 0, values.shape[2] - 1)]
c100 = values[
torch.clamp(grid_coords[:, 0] + 1, 0, values.shape[0] - 1), grid_coords[:, 1], grid_coords[:, 2]]
c101 = values[torch.clamp(grid_coords[:, 0] + 1, 0, values.shape[0] - 1), grid_coords[:, 1], torch.clamp(
grid_coords[:, 2] + 1, 0, values.shape[2] - 1)]
c110 = values[
torch.clamp(grid_coords[:, 0] + 1, 0, values.shape[0] - 1), torch.clamp(grid_coords[:, 1] + 1, 0,
values.shape[
1] - 1), grid_coords[:, 2]]
c111 = values[
torch.clamp(grid_coords[:, 0] + 1, 0, values.shape[0] - 1), torch.clamp(grid_coords[:, 1] + 1, 0,
values.shape[
1] - 1), torch.clamp(
grid_coords[:, 2] + 1, 0, values.shape[2] - 1)]
# Add channel dimension for 3D tensors if needed
if values.dim() == 3:
c000, c001, c010, c011 = [c[..., None] if c.dim() == 1 else c for c in [c000, c001, c010, c011]]
c100, c101, c110, c111 = [c[..., None] if c.dim() == 1 else c for c in [c100, c101, c110, c111]]
# Interpolate along x
c00 = c000 * (1 - x)[:, None] + c100 * x[:, None]
c01 = c001 * (1 - x)[:, None] + c101 * x[:, None]
c10 = c010 * (1 - x)[:, None] + c110 * x[:, None]
c11 = c011 * (1 - x)[:, None] + c111 * x[:, None]
# Interpolate along y
c0 = c00 * (1 - y)[:, None] + c10 * y[:, None]
c1 = c01 * (1 - y)[:, None] + c11 * y[:, None]
# Interpolate along z
return c0 * (1 - z)[:, None] + c1 * z[:, None]
def _compute_deviation_loss(self, original_vertices: torch.Tensor,
deformed_vertices: torch.Tensor) -> torch.Tensor:
"""Compute deviation loss for training"""
return torch.mean((deformed_vertices - original_vertices) ** 2)
class SparseFeatures2Mesh:
def __init__(self, device="cuda", res=128, use_color=True):
super().__init__()
self.device = device
self.res = res
self.mesh_extractor = EnhancedMarchingCubes(device=device)
self.sdf_bias = -1.0 / res
verts, cube = construct_dense_grid(self.res, self.device)
self.reg_c = cube.to(self.device)
self.reg_v = verts.to(self.device)
self.use_color = use_color
self._calc_layout()
def _calc_layout(self):
LAYOUTS = {
'sdf': {'shape': (8, 1), 'size': 8},
'deform': {'shape': (8, 3), 'size': 8 * 3},
'weights': {'shape': (21,), 'size': 21}
}
if self.use_color:
'''
6 channel color including normal map
'''
LAYOUTS['color'] = {'shape': (8, 6,), 'size': 8 * 6}
self.layouts = LAYOUTS
start = 0
for k, v in self.layouts.items():
v['range'] = (start, start + v['size'])
start += v['size']
self.feats_channels = start
def get_layout(self, feats: torch.Tensor, name: str):
if name not in self.layouts:
return None
return feats[:, self.layouts[name]['range'][0]:self.layouts[name]['range'][1]].reshape(-1, *self.layouts[name][
'shape'])
def __call__(self, cubefeats: SparseTensor, training=False):
coords = cubefeats.coords[:, 1:]
feats = cubefeats.feats
sdf, deform, color, weights = [self.get_layout(feats, name)
for name in ['sdf', 'deform', 'color', 'weights']]
sdf += self.sdf_bias
v_attrs = [sdf, deform, color] if self.use_color else [sdf, deform]
v_pos, v_attrs, reg_loss = sparse_cube2verts(coords, torch.cat(v_attrs, dim=-1),
training=training)
v_attrs_d = get_dense_attrs(v_pos, v_attrs, res=self.res + 1, sdf_init=True)
if self.use_color:
sdf_d, deform_d, colors_d = (v_attrs_d[..., 0], v_attrs_d[..., 1:4],
v_attrs_d[..., 4:])
else:
sdf_d, deform_d = v_attrs_d[..., 0], v_attrs_d[..., 1:4]
colors_d = None
x_nx3 = get_defomed_verts(self.reg_v, deform_d, self.res)
vertices, faces, L_dev, colors = self.mesh_extractor(
voxelgrid_vertices=x_nx3,
scalar_field=sdf_d,
voxelgrid_colors=colors_d,
training=training
)
mesh = MeshExtractResult(vertices=vertices, faces=faces,
vertex_attrs=colors, res=self.res)
if training:
if mesh.success:
reg_loss += L_dev.mean() * 0.5
reg_loss += (weights[:, :20]).abs().mean() * 0.2
mesh.reg_loss = reg_loss
mesh.tsdf_v = get_defomed_verts(v_pos, v_attrs[:, 1:4], self.res)
mesh.tsdf_s = v_attrs[:, 0]
return mesh
|