File size: 15,874 Bytes
52d68d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
import time
import math
import argparse
import shutil
import torch
import safetensors
from omegaconf import OmegaConf
from abc import abstractmethod
from contextlib import contextmanager
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed

from openlrm.utils.logging import configure_logger
from openlrm.utils.compile import configure_dynamo
from openlrm.runners.abstract import Runner

from collections import OrderedDict
from huggingface_hub import hf_hub_download

# def my_save_pre_hook(models, weights, output_dir):
#     keep = ["_lora", "synthesizer", "front_back_conv"]
#     for weight_dict in weights:
#         keys_to_keep = [key for key in weight_dict if any(keep_str in key for keep_str in keep)]
#         new_weight_dict = OrderedDict((key, weight_dict[key]) for key in keys_to_keep)
#         weight_dict.clear()
#         weight_dict.update(new_weight_dict)

from collections import OrderedDict

def my_save_pre_hook(models, weights, output_dir):
    assert len(models) == len(weights), "Models and weights must correspond one-to-one"

    filtered_weights_list = []
    for model, model_weights in zip(models, weights):
        filtered_weights = OrderedDict()
        for name, param in model.named_parameters():
            if param.requires_grad:
                if name in model_weights:
                    filtered_weights[name] = model_weights[name]

        filtered_weights_list.append(filtered_weights)

    weights.clear()
    weights.extend(filtered_weights_list)


logger = get_logger(__name__)


def parse_configs():
    # Define argparse arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', type=str, default='./assets/config.yaml')
    args, unknown = parser.parse_known_args()

    # Load configuration file
    cfg = OmegaConf.load(args.config)

    # Override with command-line arguments
    cli_cfg = OmegaConf.from_cli(unknown)
    cfg = OmegaConf.merge(cfg, cli_cfg)

    return cfg

class Trainer(Runner):

    def __init__(self):
        super().__init__()

        self.cfg = parse_configs()
        self.timestamp = time.strftime("%Y%m%d-%H%M%S")

        self.accelerator = Accelerator(
            mixed_precision=self.cfg.train.mixed_precision,
            gradient_accumulation_steps=self.cfg.train.accum_steps,
            log_with=tuple(self.cfg.logger.trackers),
            project_config=ProjectConfiguration(
                logging_dir=self.cfg.logger.tracker_root,
            ),
            use_seedable_sampler=True,
            kwargs_handlers=[
                DistributedDataParallelKwargs(
                    find_unused_parameters=self.cfg.train.find_unused_parameters,
                ),
            ],
        )
        self.accelerator.register_save_state_pre_hook(my_save_pre_hook)    # it is the save model hook.

        set_seed(self.cfg.experiment.seed, device_specific=True)
        with self.accelerator.main_process_first():
            configure_logger(
                stream_level=self.cfg.logger.stream_level,
                log_level=self.cfg.logger.log_level,
                file_path=os.path.join(
                    self.cfg.logger.log_root,
                    self.cfg.experiment.parent, self.cfg.experiment.child,
                    f"{self.timestamp}.log",
                ) if self.accelerator.is_main_process else None,
            )
        logger.info(self.accelerator.state, main_process_only=False, in_order=True)
        configure_dynamo(dict(self.cfg.compile))

        # attributes with defaults
        self.model : torch.nn.Module = None
        self.optimizer: torch.optim.Optimizer = None
        self.scheduler: torch.optim.lr_scheduler.LRScheduler = None
        self.train_loader: torch.utils.data.DataLoader = None
        self.val_loader: torch.utils.data.DataLoader = None
        self.N_max_global_steps: int = None
        self.N_global_steps_per_epoch: int = None
        self.global_step: int = 0
        self.current_epoch: int = 0

    def __enter__(self):
        self.accelerator.init_trackers(
            project_name=f"{self.cfg.experiment.parent}/{self.cfg.experiment.child}",
        )
        self.prepare_everything()
        self.log_inital_info()
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.accelerator.end_training()

    @staticmethod
    def control(option: str = None, synchronized: bool = False):
        def decorator(func):
            def wrapper(self, *args, **kwargs):
                if option is None or hasattr(self.accelerator, option):
                    accelerated_func = getattr(self.accelerator, option)(func) if option is not None else func
                    result = accelerated_func(self, *args, **kwargs)
                    if synchronized:
                        self.accelerator.wait_for_everyone()
                    return result
                else:
                    raise AttributeError(f"Accelerator has no attribute {option}")
            return wrapper
        return decorator

    @contextmanager
    def exec_in_order(self):
        for rank in range(self.accelerator.num_processes):
            try:
                if self.accelerator.process_index == rank:
                    yield
            finally:
                self.accelerator.wait_for_everyone()

    @property
    def device(self):
        return self.accelerator.device

    @property
    def is_distributed(self) -> bool:
        return self.accelerator.num_processes > 1

    def prepare_everything(self, is_dist_validation: bool = True):
        # prepare with accelerator
        if is_dist_validation:
            self.model, self.optimizer, self.train_loader, self.val_loader = \
                self.accelerator.prepare(
                    self.model, self.optimizer, self.train_loader, self.val_loader,
                )
        else:
            self.model, self.optimizer, self.train_loader = \
                self.accelerator.prepare(
                    self.model, self.optimizer, self.train_loader,
                )
        self.accelerator.register_for_checkpointing(self.scheduler)
        # prepare stats
        N_total_batch_size = self.cfg.train.batch_size * self.accelerator.num_processes * self.cfg.train.accum_steps
        self.N_global_steps_per_epoch = math.ceil(len(self.train_loader) / self.cfg.train.accum_steps)
        self.N_max_global_steps = self.N_global_steps_per_epoch * self.cfg.train.epochs
        if self.cfg.train.debug_global_steps is not None:
            logger.warning(f"Overriding max global steps from {self.N_max_global_steps} to {self.cfg.train.debug_global_steps}")
            self.N_max_global_steps = self.cfg.train.debug_global_steps
        logger.info(f"======== Statistics ========")
        logger.info(f"** N_max_global_steps: {self.N_max_global_steps}")
        logger.info(f"** N_total_batch_size: {N_total_batch_size}")
        logger.info(f"** N_epochs: {self.cfg.train.epochs}")
        logger.info(f"** N_global_steps_per_epoch: {self.N_global_steps_per_epoch}")
        logger.debug(f"** Prepared loader length: {len(self.train_loader)}")
        logger.info(f"** Distributed validation: {is_dist_validation}")
        logger.info(f"============================")
        logger.info(f"======== Trainable parameters ========")
        logger.info(f"** Total: {sum(p.numel() for p in self.model.parameters() if p.requires_grad)}")
        for sub_name, sub_module in self.accelerator.unwrap_model(self.model).named_children():
            logger.info(f"** {sub_name}: {sum(p.numel() for p in sub_module.parameters() if p.requires_grad)}")
        logger.info(f"=====================================")
        self.accelerator.wait_for_everyone()
        # load checkpoint or model
        self.load_ckpt_or_auto_resume_(self.cfg)
        # register hooks
        self.register_hooks()

    @abstractmethod
    def register_hooks(self):
        pass

    def auto_resume_(self, cfg) -> bool:
        ckpt_root = os.path.join(
            cfg.saver.checkpoint_root,
            cfg.experiment.parent, cfg.experiment.child,
        )
        if not os.path.exists(ckpt_root):
            return False
        ckpt_dirs = os.listdir(ckpt_root)
        if len(ckpt_dirs) == 0:
            return False
        ckpt_dirs.sort()
        latest_ckpt = ckpt_dirs[-1]
        latest_ckpt_dir = os.path.join(ckpt_root, latest_ckpt)
        logger.info(f"======== Auto-resume from {latest_ckpt_dir} ========")
        self.accelerator.load_state(latest_ckpt_dir, strict=cfg.saver.load_model_func_kwargs.strict)
        self.global_step = int(latest_ckpt)
        self.current_epoch = self.global_step // self.N_global_steps_per_epoch
        return True

    def load_model_(self, cfg):
        if cfg.saver.load_model.type == 'hugging_face':
            repo_id, file_name = os.path.dirname(cfg.saver.load_model.url), os.path.basename(cfg.saver.load_model.url)
            pretrain_model_path = hf_hub_download(repo_id=repo_id, filename=file_name)
            logger.info(f"======== Loading pretrain model from hugging face {repo_id, file_name} ========")
            safetensors.torch.load_model(
                self.accelerator.unwrap_model(self.model),
                pretrain_model_path,
                **cfg.saver.load_model_func_kwargs
            )
            logger.info(f"======== Pretrain Model loaded ========")
            return True
        else:
            logger.info(f"======== Loading model from {cfg.saver.load_model} ========")
            safetensors.torch.load_model(
                self.accelerator.unwrap_model(self.model),
                cfg.saver.load_model,
                strict=True,
            )
            logger.info(f"======== Model loaded ========")
            return True

    @control(synchronized=True)
    def load_ckpt_or_auto_resume_(self, cfg):
        # auto resume has higher priority, load model from path if auto resume is not available
        # cfg.saver.auto_resume and cfg.saver.load_model
        if cfg.saver.auto_resume:
            successful_resume = self.auto_resume_(cfg)
            if successful_resume:
                if cfg.saver.load_model:
                    successful_load = self.load_model_(cfg)
                    if successful_load:
                        return
                return
        if cfg.saver.load_model:
            successful_load = self.load_model_(cfg)
            if successful_load:
                return
        logger.debug(f"======== No checkpoint or model is loaded ========")

    @control('on_main_process', synchronized=True)
    def save_checkpoint(self):
        ckpt_dir = os.path.join(
            self.cfg.saver.checkpoint_root,
            self.cfg.experiment.parent, self.cfg.experiment.child,
            f"{self.global_step:06d}",
        )
        self.accelerator.save_state(output_dir=ckpt_dir, safe_serialization=True)
        logger.info(f"======== Saved checkpoint at global step {self.global_step} ========")
        # manage stratified checkpoints
        ckpt_dirs = os.listdir(os.path.dirname(ckpt_dir))
        ckpt_dirs.sort()
        max_ckpt = int(ckpt_dirs[-1])
        ckpt_base = int(self.cfg.saver.checkpoint_keep_level)
        ckpt_period = self.cfg.saver.checkpoint_global_steps
        logger.debug(f"Checkpoint base: {ckpt_base}")
        logger.debug(f"Checkpoint period: {ckpt_period}")
        cur_order = ckpt_base ** math.floor(math.log(max_ckpt // ckpt_period, ckpt_base))
        cur_idx = 0
        while cur_order > 0:
            cur_digit = max_ckpt // ckpt_period // cur_order % ckpt_base
            while cur_idx < len(ckpt_dirs) and int(ckpt_dirs[cur_idx]) // ckpt_period // cur_order % ckpt_base < cur_digit:
                if int(ckpt_dirs[cur_idx]) // ckpt_period % cur_order != 0:
                    shutil.rmtree(os.path.join(os.path.dirname(ckpt_dir), ckpt_dirs[cur_idx]))
                    logger.info(f"Removed checkpoint {ckpt_dirs[cur_idx]}")
                cur_idx += 1
            cur_order //= ckpt_base

    @property
    def global_step_in_epoch(self):
        return self.global_step % self.N_global_steps_per_epoch

    @abstractmethod
    def _build_model(self):
        pass

    @abstractmethod
    def _build_optimizer(self):
        pass

    @abstractmethod
    def _build_scheduler(self):
        pass

    @abstractmethod
    def _build_dataloader(self):
        pass

    @abstractmethod
    def _build_loss_fn(self):
        pass

    @abstractmethod
    def train(self):
        pass

    @abstractmethod
    def evaluate(self):
        pass

    @staticmethod
    def _get_str_progress(epoch: int = None, step: int = None):
        if epoch is not None:
            log_type = 'epoch'
            log_progress = epoch
        elif step is not None:
            log_type = 'step'
            log_progress = step
        else:
            raise ValueError('Either epoch or step must be provided')
        return log_type, log_progress

    @control('on_main_process')
    def log_scalar_kwargs(self, epoch: int = None, step: int = None, split: str = None, **scalar_kwargs):
        log_type, log_progress = self._get_str_progress(epoch, step)
        split = f'/{split}' if split else ''
        for key, value in scalar_kwargs.items():
            self.accelerator.log({f'{key}{split}/{log_type}': value}, log_progress)

    @control('on_main_process')
    def log_images(self, values: dict, step: int | None = None, log_kwargs: dict | None = {}):
        for tracker in self.accelerator.trackers:
            if hasattr(tracker, 'log_images'):
                tracker.log_images(values, step=step, **log_kwargs.get(tracker.name, {}))

    @control('on_main_process')
    def log_optimizer(self, epoch: int = None, step: int = None, attrs: list[str] = [], group_ids: list[int] = []):
        log_type, log_progress = self._get_str_progress(epoch, step)
        assert self.optimizer is not None, 'Optimizer is not initialized'
        if not attrs:
            logger.warning('No optimizer attributes are provided, nothing will be logged')
        if not group_ids:
            logger.warning('No optimizer group ids are provided, nothing will be logged')
        for attr in attrs:
            assert attr in ['lr', 'momentum', 'weight_decay'], f'Invalid optimizer attribute {attr}'
            for group_id in group_ids:
                self.accelerator.log({f'opt/{attr}/{group_id}': self.optimizer.param_groups[group_id][attr]}, log_progress)

    @control('on_main_process')
    def log_inital_info(self):
        assert self.model is not None, 'Model is not initialized'
        assert self.optimizer is not None, 'Optimizer is not initialized'
        assert self.scheduler is not None, 'Scheduler is not initialized'
        self.accelerator.log({'Config': "```\n" + OmegaConf.to_yaml(self.cfg) + "\n```"})
        self.accelerator.log({'Model': "```\n" + str(self.model) + "\n```"})
        self.accelerator.log({'Optimizer': "```\n" + str(self.optimizer) + "\n```"})
        self.accelerator.log({'Scheduler': "```\n" + str(self.scheduler) + "\n```"})

    def run(self):
        self.train()