|
import os |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from einops import rearrange |
|
from huggingface_hub import hf_hub_download |
|
from PIL import Image |
|
|
|
from ..util import HWC3, resize_image |
|
from .zoedepth.models.zoedepth.zoedepth_v1 import ZoeDepth |
|
from .zoedepth.models.zoedepth_nk.zoedepth_nk_v1 import ZoeDepthNK |
|
from .zoedepth.utils.config import get_config |
|
|
|
|
|
class ZoeDetector: |
|
def __init__(self, model): |
|
self.model = model |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_or_path, model_type="zoedepth", filename=None, cache_dir=None, local_files_only=False): |
|
filename = filename or "ZoeD_M12_N.pt" |
|
|
|
if os.path.isdir(pretrained_model_or_path): |
|
model_path = os.path.join(pretrained_model_or_path, filename) |
|
else: |
|
model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only) |
|
|
|
conf = get_config(model_type, "infer") |
|
model_cls = ZoeDepth if model_type == "zoedepth" else ZoeDepthNK |
|
model = model_cls.build_from_config(conf) |
|
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))['model']) |
|
model.eval() |
|
|
|
return cls(model) |
|
|
|
def to(self, device): |
|
self.model.to(device) |
|
return self |
|
|
|
def __call__(self, input_image, detect_resolution=512, image_resolution=512, output_type=None, gamma_corrected=False): |
|
device = next(iter(self.model.parameters())).device |
|
if not isinstance(input_image, np.ndarray): |
|
input_image = np.array(input_image, dtype=np.uint8) |
|
output_type = output_type or "pil" |
|
else: |
|
output_type = output_type or "np" |
|
|
|
input_image = HWC3(input_image) |
|
input_image = resize_image(input_image, detect_resolution) |
|
|
|
assert input_image.ndim == 3 |
|
image_depth = input_image |
|
with torch.no_grad(): |
|
image_depth = torch.from_numpy(image_depth).float().to(device) |
|
image_depth = image_depth / 255.0 |
|
image_depth = rearrange(image_depth, 'h w c -> 1 c h w') |
|
depth = self.model.infer(image_depth) |
|
|
|
depth = depth[0, 0].cpu().numpy() |
|
|
|
vmin = np.percentile(depth, 2) |
|
vmax = np.percentile(depth, 85) |
|
|
|
depth -= vmin |
|
depth /= vmax - vmin |
|
depth = 1.0 - depth |
|
|
|
if gamma_corrected: |
|
depth = np.power(depth, 2.2) |
|
depth_image = (depth * 255.0).clip(0, 255).astype(np.uint8) |
|
|
|
detected_map = depth_image |
|
detected_map = HWC3(detected_map) |
|
|
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) |
|
|
|
if output_type == "pil": |
|
detected_map = Image.fromarray(detected_map) |
|
|
|
return detected_map |
|
|