|
import os |
|
import warnings |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from einops import rearrange |
|
from huggingface_hub import hf_hub_download |
|
from PIL import Image |
|
|
|
from ..util import HWC3, nms, resize_image, safe_step |
|
from .model import pidinet |
|
|
|
|
|
class PidiNetDetector: |
|
def __init__(self, netNetwork): |
|
self.netNetwork = netNetwork |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_or_path, filename=None, cache_dir=None, local_files_only=False): |
|
filename = filename or "table5_pidinet.pth" |
|
|
|
if os.path.isdir(pretrained_model_or_path): |
|
model_path = os.path.join(pretrained_model_or_path, filename) |
|
else: |
|
model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only) |
|
|
|
netNetwork = pidinet() |
|
netNetwork.load_state_dict({k.replace('module.', ''): v for k, v in torch.load(model_path)['state_dict'].items()}) |
|
netNetwork.eval() |
|
|
|
return cls(netNetwork) |
|
|
|
def to(self, device): |
|
self.netNetwork.to(device) |
|
return self |
|
|
|
def __call__(self, input_image, detect_resolution=512, image_resolution=512, safe=False, output_type="pil", scribble=False, apply_filter=False, **kwargs): |
|
if "return_pil" in kwargs: |
|
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning) |
|
output_type = "pil" if kwargs["return_pil"] else "np" |
|
if type(output_type) is bool: |
|
warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions") |
|
if output_type: |
|
output_type = "pil" |
|
|
|
device = next(iter(self.netNetwork.parameters())).device |
|
if not isinstance(input_image, np.ndarray): |
|
input_image = np.array(input_image, dtype=np.uint8) |
|
|
|
input_image = HWC3(input_image) |
|
input_image = resize_image(input_image, detect_resolution) |
|
assert input_image.ndim == 3 |
|
input_image = input_image[:, :, ::-1].copy() |
|
with torch.no_grad(): |
|
image_pidi = torch.from_numpy(input_image).float().to(device) |
|
image_pidi = image_pidi / 255.0 |
|
image_pidi = rearrange(image_pidi, 'h w c -> 1 c h w') |
|
edge = self.netNetwork(image_pidi)[-1] |
|
edge = edge.cpu().numpy() |
|
if apply_filter: |
|
edge = edge > 0.5 |
|
if safe: |
|
edge = safe_step(edge) |
|
edge = (edge * 255.0).clip(0, 255).astype(np.uint8) |
|
|
|
detected_map = edge[0, 0] |
|
detected_map = HWC3(detected_map) |
|
|
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) |
|
|
|
if scribble: |
|
detected_map = nms(detected_map, 127, 3.0) |
|
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0) |
|
detected_map[detected_map > 4] = 255 |
|
detected_map[detected_map < 255] = 0 |
|
|
|
if output_type == "pil": |
|
detected_map = Image.fromarray(detected_map) |
|
|
|
return detected_map |
|
|