|
import os |
|
import types |
|
import warnings |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as transforms |
|
from einops import rearrange |
|
from huggingface_hub import hf_hub_download |
|
from PIL import Image |
|
|
|
from ..util import HWC3, resize_image |
|
from .nets.NNET import NNET |
|
|
|
|
|
|
|
def load_checkpoint(fpath, model): |
|
ckpt = torch.load(fpath, map_location='cpu')['model'] |
|
|
|
load_dict = {} |
|
for k, v in ckpt.items(): |
|
if k.startswith('module.'): |
|
k_ = k.replace('module.', '') |
|
load_dict[k_] = v |
|
else: |
|
load_dict[k] = v |
|
|
|
model.load_state_dict(load_dict) |
|
return model |
|
|
|
class NormalBaeDetector: |
|
def __init__(self, model): |
|
self.model = model |
|
self.norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_or_path, filename=None, cache_dir=None, local_files_only=False): |
|
filename = filename or "scannet.pt" |
|
|
|
if os.path.isdir(pretrained_model_or_path): |
|
model_path = os.path.join(pretrained_model_or_path, filename) |
|
else: |
|
model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only) |
|
|
|
args = types.SimpleNamespace() |
|
args.mode = 'client' |
|
args.architecture = 'BN' |
|
args.pretrained = 'scannet' |
|
args.sampling_ratio = 0.4 |
|
args.importance_ratio = 0.7 |
|
model = NNET(args) |
|
model = load_checkpoint(model_path, model) |
|
model.eval() |
|
|
|
return cls(model) |
|
|
|
def to(self, device): |
|
self.model.to(device) |
|
return self |
|
|
|
|
|
def __call__(self, input_image, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs): |
|
if "return_pil" in kwargs: |
|
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning) |
|
output_type = "pil" if kwargs["return_pil"] else "np" |
|
if type(output_type) is bool: |
|
warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions") |
|
if output_type: |
|
output_type = "pil" |
|
|
|
device = next(iter(self.model.parameters())).device |
|
if not isinstance(input_image, np.ndarray): |
|
input_image = np.array(input_image, dtype=np.uint8) |
|
|
|
input_image = HWC3(input_image) |
|
input_image = resize_image(input_image, detect_resolution) |
|
|
|
assert input_image.ndim == 3 |
|
image_normal = input_image |
|
with torch.no_grad(): |
|
image_normal = torch.from_numpy(image_normal).float().to(device) |
|
image_normal = image_normal / 255.0 |
|
image_normal = rearrange(image_normal, 'h w c -> 1 c h w') |
|
image_normal = self.norm(image_normal) |
|
|
|
normal = self.model(image_normal) |
|
normal = normal[0][-1][:, :3] |
|
|
|
|
|
|
|
normal = ((normal + 1) * 0.5).clip(0, 1) |
|
|
|
normal = rearrange(normal[0], 'c h w -> h w c').cpu().numpy() |
|
normal_image = (normal * 255.0).clip(0, 255).astype(np.uint8) |
|
|
|
detected_map = normal_image |
|
detected_map = HWC3(detected_map) |
|
|
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) |
|
|
|
if output_type == "pil": |
|
detected_map = Image.fromarray(detected_map) |
|
|
|
return detected_map |
|
|