|
import os |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from einops import rearrange |
|
from huggingface_hub import hf_hub_download |
|
from PIL import Image |
|
|
|
from ..util import HWC3, resize_image |
|
from .api import MiDaSInference |
|
|
|
|
|
class MidasDetector: |
|
def __init__(self, model): |
|
self.model = model |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_or_path, model_type="dpt_hybrid", filename=None, cache_dir=None, local_files_only=False): |
|
if pretrained_model_or_path == "lllyasviel/ControlNet": |
|
filename = filename or "annotator/ckpts/dpt_hybrid-midas-501f0c75.pt" |
|
else: |
|
filename = filename or "dpt_hybrid-midas-501f0c75.pt" |
|
|
|
if os.path.isdir(pretrained_model_or_path): |
|
model_path = os.path.join(pretrained_model_or_path, filename) |
|
else: |
|
model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only) |
|
|
|
model = MiDaSInference(model_type=model_type, model_path=model_path) |
|
|
|
return cls(model) |
|
|
|
|
|
def to(self, device): |
|
self.model.to(device) |
|
return self |
|
|
|
def __call__(self, input_image, a=np.pi * 2.0, bg_th=0.1, depth_and_normal=False, detect_resolution=512, image_resolution=512, output_type=None): |
|
device = next(iter(self.model.parameters())).device |
|
if not isinstance(input_image, np.ndarray): |
|
input_image = np.array(input_image, dtype=np.uint8) |
|
output_type = output_type or "pil" |
|
else: |
|
output_type = output_type or "np" |
|
|
|
input_image = HWC3(input_image) |
|
input_image = resize_image(input_image, detect_resolution) |
|
|
|
assert input_image.ndim == 3 |
|
image_depth = input_image |
|
with torch.no_grad(): |
|
image_depth = torch.from_numpy(image_depth).float() |
|
image_depth = image_depth.to(device) |
|
image_depth = image_depth / 127.5 - 1.0 |
|
image_depth = rearrange(image_depth, 'h w c -> 1 c h w') |
|
depth = self.model(image_depth)[0] |
|
|
|
depth_pt = depth.clone() |
|
depth_pt -= torch.min(depth_pt) |
|
depth_pt /= torch.max(depth_pt) |
|
depth_pt = depth_pt.cpu().numpy() |
|
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8) |
|
|
|
if depth_and_normal: |
|
depth_np = depth.cpu().numpy() |
|
x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3) |
|
y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3) |
|
z = np.ones_like(x) * a |
|
x[depth_pt < bg_th] = 0 |
|
y[depth_pt < bg_th] = 0 |
|
normal = np.stack([x, y, z], axis=2) |
|
normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5 |
|
normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)[:, :, ::-1] |
|
|
|
depth_image = HWC3(depth_image) |
|
if depth_and_normal: |
|
normal_image = HWC3(normal_image) |
|
|
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
|
|
depth_image = cv2.resize(depth_image, (W, H), interpolation=cv2.INTER_LINEAR) |
|
if depth_and_normal: |
|
normal_image = cv2.resize(normal_image, (W, H), interpolation=cv2.INTER_LINEAR) |
|
|
|
if output_type == "pil": |
|
depth_image = Image.fromarray(depth_image) |
|
if depth_and_normal: |
|
normal_image = Image.fromarray(normal_image) |
|
|
|
if depth_and_normal: |
|
return depth_image, normal_image |
|
else: |
|
return depth_image |
|
|