|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import warnings |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from einops import rearrange |
|
from huggingface_hub import hf_hub_download |
|
from PIL import Image |
|
|
|
from ..util import HWC3, nms, resize_image, safe_step |
|
|
|
|
|
class DoubleConvBlock(torch.nn.Module): |
|
def __init__(self, input_channel, output_channel, layer_number): |
|
super().__init__() |
|
self.convs = torch.nn.Sequential() |
|
self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) |
|
for i in range(1, layer_number): |
|
self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) |
|
self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0) |
|
|
|
def __call__(self, x, down_sampling=False): |
|
h = x |
|
if down_sampling: |
|
h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2)) |
|
for conv in self.convs: |
|
h = conv(h) |
|
h = torch.nn.functional.relu(h) |
|
return h, self.projection(h) |
|
|
|
|
|
class ControlNetHED_Apache2(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1))) |
|
self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2) |
|
self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2) |
|
self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3) |
|
self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3) |
|
self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3) |
|
|
|
def __call__(self, x): |
|
h = x - self.norm |
|
h, projection1 = self.block1(h) |
|
h, projection2 = self.block2(h, down_sampling=True) |
|
h, projection3 = self.block3(h, down_sampling=True) |
|
h, projection4 = self.block4(h, down_sampling=True) |
|
h, projection5 = self.block5(h, down_sampling=True) |
|
return projection1, projection2, projection3, projection4, projection5 |
|
|
|
class HEDdetector: |
|
def __init__(self, netNetwork): |
|
self.netNetwork = netNetwork |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_or_path, filename=None, cache_dir=None, local_files_only=False): |
|
filename = filename or "ControlNetHED.pth" |
|
|
|
if os.path.isdir(pretrained_model_or_path): |
|
model_path = os.path.join(pretrained_model_or_path, filename) |
|
else: |
|
model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only) |
|
|
|
netNetwork = ControlNetHED_Apache2() |
|
netNetwork.load_state_dict(torch.load(model_path, map_location='cpu')) |
|
netNetwork.float().eval() |
|
|
|
return cls(netNetwork) |
|
|
|
def to(self, device): |
|
self.netNetwork.to(device) |
|
return self |
|
|
|
def __call__(self, input_image, detect_resolution=512, image_resolution=512, safe=False, output_type="pil", scribble=False, **kwargs): |
|
if "return_pil" in kwargs: |
|
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning) |
|
output_type = "pil" if kwargs["return_pil"] else "np" |
|
if type(output_type) is bool: |
|
warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions") |
|
if output_type: |
|
output_type = "pil" |
|
|
|
device = next(iter(self.netNetwork.parameters())).device |
|
if not isinstance(input_image, np.ndarray): |
|
input_image = np.array(input_image, dtype=np.uint8) |
|
|
|
input_image = HWC3(input_image) |
|
input_image = resize_image(input_image, detect_resolution) |
|
|
|
assert input_image.ndim == 3 |
|
H, W, C = input_image.shape |
|
with torch.no_grad(): |
|
image_hed = torch.from_numpy(input_image.copy()).float().to(device) |
|
image_hed = rearrange(image_hed, 'h w c -> 1 c h w') |
|
edges = self.netNetwork(image_hed) |
|
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges] |
|
edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges] |
|
edges = np.stack(edges, axis=2) |
|
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64))) |
|
if safe: |
|
edge = safe_step(edge) |
|
edge = (edge * 255.0).clip(0, 255).astype(np.uint8) |
|
|
|
detected_map = edge |
|
detected_map = HWC3(detected_map) |
|
|
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) |
|
|
|
if scribble: |
|
detected_map = nms(detected_map, 127, 3.0) |
|
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0) |
|
detected_map[detected_map > 4] = 255 |
|
detected_map[detected_map < 255] = 0 |
|
|
|
if output_type == "pil": |
|
detected_map = Image.fromarray(detected_map) |
|
|
|
return detected_map |
|
|