|
|
|
import os |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from einops import rearrange |
|
from huggingface_hub import hf_hub_download |
|
from PIL import Image |
|
from skimage import morphology |
|
|
|
from ..teed.ted import TED |
|
from ..util import HWC3, resize_image, safe_step |
|
|
|
|
|
class AnylineDetector: |
|
def __init__(self, model): |
|
self.model = model |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_or_path, filename=None, subfolder=None): |
|
if os.path.isdir(pretrained_model_or_path): |
|
model_path = os.path.join(pretrained_model_or_path, filename) |
|
else: |
|
model_path = hf_hub_download( |
|
pretrained_model_or_path, filename, subfolder=subfolder |
|
) |
|
|
|
model = TED() |
|
model.load_state_dict(torch.load(model_path, map_location="cpu")) |
|
|
|
return cls(model) |
|
|
|
def to(self, device): |
|
self.model.to(device) |
|
return self |
|
|
|
def __call__( |
|
self, |
|
input_image, |
|
detect_resolution=1280, |
|
guassian_sigma=2.0, |
|
intensity_threshold=3, |
|
output_type="pil", |
|
): |
|
device = next(iter(self.model.parameters())).device |
|
|
|
if not isinstance(input_image, np.ndarray): |
|
input_image = np.array(input_image, dtype=np.uint8) |
|
output_type = output_type or "pil" |
|
else: |
|
output_type = output_type or "np" |
|
|
|
original_height, original_width, _ = input_image.shape |
|
|
|
input_image = HWC3(input_image) |
|
input_image = resize_image(input_image, detect_resolution) |
|
|
|
assert input_image.ndim == 3 |
|
height, width, _ = input_image.shape |
|
with torch.no_grad(): |
|
image_teed = torch.from_numpy(input_image.copy()).float().to(device) |
|
image_teed = rearrange(image_teed, "h w c -> 1 c h w") |
|
edges = self.model(image_teed) |
|
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges] |
|
edges = [ |
|
cv2.resize(e, (width, height), interpolation=cv2.INTER_LINEAR) |
|
for e in edges |
|
] |
|
edges = np.stack(edges, axis=2) |
|
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64))) |
|
edge = safe_step(edge, 2) |
|
edge = (edge * 255.0).clip(0, 255).astype(np.uint8) |
|
|
|
mteed_result = edge |
|
mteed_result = HWC3(mteed_result) |
|
|
|
x = input_image.astype(np.float32) |
|
g = cv2.GaussianBlur(x, (0, 0), guassian_sigma) |
|
intensity = np.min(g - x, axis=2).clip(0, 255) |
|
intensity /= max(16, np.median(intensity[intensity > intensity_threshold])) |
|
intensity *= 127 |
|
lineart_result = intensity.clip(0, 255).astype(np.uint8) |
|
|
|
lineart_result = HWC3(lineart_result) |
|
|
|
lineart_result = self.get_intensity_mask( |
|
lineart_result, lower_bound=0, upper_bound=255 |
|
) |
|
|
|
cleaned = morphology.remove_small_objects( |
|
lineart_result.astype(bool), min_size=36, connectivity=1 |
|
) |
|
lineart_result = lineart_result * cleaned |
|
final_result = self.combine_layers(mteed_result, lineart_result) |
|
|
|
final_result = cv2.resize( |
|
final_result, |
|
(original_width, original_height), |
|
interpolation=cv2.INTER_LINEAR, |
|
) |
|
|
|
if output_type == "pil": |
|
final_result = Image.fromarray(final_result) |
|
|
|
return final_result |
|
|
|
def get_intensity_mask(self, image_array, lower_bound, upper_bound): |
|
mask = image_array[:, :, 0] |
|
mask = np.where((mask >= lower_bound) & (mask <= upper_bound), mask, 0) |
|
mask = np.expand_dims(mask, 2).repeat(3, axis=2) |
|
return mask |
|
|
|
def combine_layers(self, base_layer, top_layer): |
|
mask = top_layer.astype(bool) |
|
temp = 1 - (1 - top_layer) * (1 - base_layer) |
|
result = base_layer * (~mask) + temp * mask |
|
return result |
|
|