|
import gradio as gr |
|
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM |
|
|
|
|
|
model_checkpoint = "himanishprak23/neural_machine_translation" |
|
tokenizer_checkpoint = "Helsinki-NLP/opus-mt-en-hi" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_checkpoint) |
|
model = TFAutoModelForSeq2SeqLM.from_pretrained(model_checkpoint) |
|
|
|
def translate_text(input_text): |
|
tokenized_input = tokenizer(input_text, return_tensors='tf', max_length=128, truncation=True) |
|
generated_tokens = model.generate(**tokenized_input, max_length=128) |
|
predicted_text = tokenizer.decode(generated_tokens[0], skip_special_tokens=True) |
|
return predicted_text |
|
|
|
|
|
iface = gr.Interface( |
|
fn=translate_text, |
|
inputs=gr.components.Textbox(lines=2, placeholder="Enter text to translate from English to Hindi..."), |
|
outputs=gr.components.Textbox(), |
|
title="English to Hindi Translator", |
|
description="Enter English text and get the Hindi translation." |
|
) |
|
|
|
|
|
iface.launch() |
|
|