File size: 31,071 Bytes
9d2f4f2
 
bbf45d0
 
 
 
7262ace
 
 
9d2f4f2
 
 
bbf45d0
9d2f4f2
7262ace
9d2f4f2
 
7262ace
9d2f4f2
 
7262ace
9d2f4f2
 
 
 
bbf45d0
9d2f4f2
 
 
 
 
 
 
 
 
 
 
 
 
bbf45d0
9d2f4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbf45d0
9d2f4f2
 
 
 
bbf45d0
9d2f4f2
 
bbf45d0
9d2f4f2
 
 
bbf45d0
9d2f4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7262ace
9d2f4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7262ace
9d2f4f2
 
 
 
 
 
 
 
 
 
 
 
 
7262ace
9d2f4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7262ace
9d2f4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
bbf45d0
7262ace
 
9d2f4f2
7262ace
9d2f4f2
 
 
7262ace
9d2f4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbf45d0
9d2f4f2
 
 
 
 
 
 
 
 
7262ace
9d2f4f2
 
 
 
 
 
 
 
 
 
7262ace
9d2f4f2
7262ace
 
 
 
9d2f4f2
 
7262ace
 
9d2f4f2
7262ace
 
bbf45d0
9d2f4f2
 
bbf45d0
 
9d2f4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7262ace
9d2f4f2
 
 
 
 
 
 
 
 
 
 
7262ace
9d2f4f2
7262ace
9d2f4f2
 
 
 
 
 
 
7262ace
9d2f4f2
 
 
 
 
7262ace
9d2f4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7262ace
9d2f4f2
 
 
 
 
7262ace
9d2f4f2
bbf45d0
9d2f4f2
 
 
 
 
7262ace
9d2f4f2
 
 
 
7262ace
bbf45d0
9d2f4f2
 
 
7262ace
 
9d2f4f2
 
 
bbf45d0
 
9d2f4f2
 
 
 
bbf45d0
 
 
9d2f4f2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
# --- START OF FILE app.py ---

import json
import gradio as gr
import pandas as pd
import plotly.express as px
import os
import numpy as np
import duckdb
from tqdm.auto import tqdm # Standard tqdm for console, gr.Progress will track it
import time
import ast # For safely evaluating string representations of lists/dicts

# --- Constants ---
MODEL_SIZE_RANGES = {
    "Small (<1GB)": (0, 1), "Medium (1-5GB)": (1, 5), "Large (5-20GB)": (5, 20),
    "X-Large (20-50GB)": (20, 50), "XX-Large (>50GB)": (50, float('inf'))
}
PROCESSED_PARQUET_FILE_PATH = "models_processed.parquet"
HF_PARQUET_URL = 'https://huggingface.co/datasets/cfahlgren1/hub-stats/resolve/main/models.parquet' # Added for completeness within app.py context

TAG_FILTER_CHOICES = [
    "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images",
    "Text", "Biomedical", "Sciences"
]

PIPELINE_TAGS = [
 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation',
 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation',
 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition',
 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering',
 'image-feature-extraction', 'summarization', 'zero-shot-image-classification',
 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text',
 'audio-classification', 'visual-question-answering', 'text-to-video',
 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video',
 'multiple-choice', 'unconditional-image-generation', 'video-classification',
 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text',
 'table-question-answering',
]

def extract_model_size(safetensors_data):
    try:
        if pd.isna(safetensors_data): return 0.0
        data_to_parse = safetensors_data
        if isinstance(safetensors_data, str):
            try:
                if (safetensors_data.startswith('{') and safetensors_data.endswith('}')) or \
                   (safetensors_data.startswith('[') and safetensors_data.endswith(']')):
                    data_to_parse = ast.literal_eval(safetensors_data)
                else: data_to_parse = json.loads(safetensors_data)
            except: return 0.0
        if isinstance(data_to_parse, dict) and 'total' in data_to_parse:
            try:
                total_bytes_val = data_to_parse['total']
                size_bytes = float(total_bytes_val)
                return size_bytes / (1024 * 1024 * 1024)
            except (ValueError, TypeError): pass
        return 0.0
    except: return 0.0

def extract_org_from_id(model_id):
    if pd.isna(model_id): return "unaffiliated"
    model_id_str = str(model_id)
    return model_id_str.split("/")[0] if "/" in model_id_str else "unaffiliated"

def process_tags_for_series(series_of_tags_values):
    processed_tags_accumulator = []

    for i, tags_value_from_series in enumerate(tqdm(series_of_tags_values, desc="Standardizing Tags", leave=False, unit="row")):
        temp_processed_list_for_row = []
        current_value_for_error_msg = str(tags_value_from_series)[:200] # Truncate for long error messages

        try:
            # Order of checks is important!
            # 1. Handle explicit Python lists first
            if isinstance(tags_value_from_series, list):
                current_tags_in_list = []
                for idx_tag, tag_item in enumerate(tags_value_from_series):
                    try:
                        # Ensure item is not NaN before string conversion if it might be a float NaN in a list
                        if pd.isna(tag_item): continue 
                        str_tag = str(tag_item)
                        stripped_tag = str_tag.strip()
                        if stripped_tag:
                            current_tags_in_list.append(stripped_tag)
                    except Exception as e_inner_list_proc:
                        print(f"ERROR processing item '{tag_item}' (type: {type(tag_item)}) within a list for row {i}. Error: {e_inner_list_proc}. Original list: {current_value_for_error_msg}")
                temp_processed_list_for_row = current_tags_in_list

            # 2. Handle NumPy arrays
            elif isinstance(tags_value_from_series, np.ndarray):
                # Convert to list, then process elements, handling potential NaNs within the array
                current_tags_in_list = []
                for idx_tag, tag_item in enumerate(tags_value_from_series.tolist()): # .tolist() is crucial
                    try:
                        if pd.isna(tag_item): continue # Check for NaN after converting to Python type
                        str_tag = str(tag_item)
                        stripped_tag = str_tag.strip()
                        if stripped_tag:
                            current_tags_in_list.append(stripped_tag)
                    except Exception as e_inner_array_proc:
                        print(f"ERROR processing item '{tag_item}' (type: {type(tag_item)}) within a NumPy array for row {i}. Error: {e_inner_array_proc}. Original array: {current_value_for_error_msg}")
                temp_processed_list_for_row = current_tags_in_list
            
            # 3. Handle simple None or pd.NA after lists and arrays (which might contain pd.NA elements handled above)
            elif tags_value_from_series is None or pd.isna(tags_value_from_series): # Now pd.isna is safe for scalars
                temp_processed_list_for_row = []

            # 4. Handle strings (could be JSON-like, list-like, or comma-separated)
            elif isinstance(tags_value_from_series, str):
                processed_str_tags = []
                # Attempt ast.literal_eval for strings that look like lists/tuples
                if (tags_value_from_series.startswith('[') and tags_value_from_series.endswith(']')) or \
                   (tags_value_from_series.startswith('(') and tags_value_from_series.endswith(')')):
                    try:
                        evaluated_tags = ast.literal_eval(tags_value_from_series)
                        if isinstance(evaluated_tags, (list, tuple)): # Check if eval result is a list/tuple
                            # Recursively process this evaluated list/tuple, as its elements could be complex
                            # For simplicity here, assume elements are simple strings after eval
                            current_eval_list = []
                            for tag_item in evaluated_tags:
                                if pd.isna(tag_item): continue
                                str_tag = str(tag_item).strip()
                                if str_tag: current_eval_list.append(str_tag)
                            processed_str_tags = current_eval_list
                    except (ValueError, SyntaxError):
                        pass # If ast.literal_eval fails, let it fall to JSON or comma split

                # If ast.literal_eval didn't populate, try JSON
                if not processed_str_tags:
                    try:
                        json_tags = json.loads(tags_value_from_series)
                        if isinstance(json_tags, list):
                            # Similar to above, assume elements are simple strings after JSON parsing
                            current_json_list = []
                            for tag_item in json_tags:
                                if pd.isna(tag_item): continue
                                str_tag = str(tag_item).strip()
                                if str_tag: current_json_list.append(str_tag)
                            processed_str_tags = current_json_list
                    except json.JSONDecodeError:
                        # If not a valid JSON list, fall back to comma splitting as the final string strategy
                        processed_str_tags = [tag.strip() for tag in tags_value_from_series.split(',') if tag.strip()]
                    except Exception as e_json_other:
                        print(f"ERROR during JSON processing for string '{current_value_for_error_msg}' for row {i}. Error: {e_json_other}")
                        processed_str_tags = [tag.strip() for tag in tags_value_from_series.split(',') if tag.strip()] # Fallback

                temp_processed_list_for_row = processed_str_tags
            
            # 5. Fallback for other scalar types (e.g., int, float that are not NaN)
            else:
                # This path is for non-list, non-ndarray, non-None/NaN, non-string types.
                # Or for NaNs that slipped through if they are not None or pd.NA (e.g. float('nan'))
                if pd.isna(tags_value_from_series): # Catch any remaining NaNs like float('nan')
                     temp_processed_list_for_row = []
                else:
                    str_val = str(tags_value_from_series).strip()
                    temp_processed_list_for_row = [str_val] if str_val else []
            
            processed_tags_accumulator.append(temp_processed_list_for_row)

        except Exception as e_outer_tag_proc:
            print(f"CRITICAL UNHANDLED ERROR processing row {i}: value '{current_value_for_error_msg}' (type: {type(tags_value_from_series)}). Error: {e_outer_tag_proc}. Appending [].")
            processed_tags_accumulator.append([])
            
    return processed_tags_accumulator

def load_models_data(force_refresh=False, tqdm_cls=None):
    if tqdm_cls is None: tqdm_cls = tqdm
    overall_start_time = time.time()
    print(f"Gradio load_models_data called with force_refresh={force_refresh}")

    expected_cols_in_processed_parquet = [
        'id', 'downloads', 'downloadsAllTime', 'likes', 'pipeline_tag', 'tags', 'params',
        'size_category', 'organization', 'has_audio', 'has_speech', 'has_music',
        'has_robot', 'has_bio', 'has_med', 'has_series', 'has_video', 'has_image',
        'has_text', 'has_science', 'is_audio_speech', 'is_biomed',
        'data_download_timestamp'
    ]

    if not force_refresh and os.path.exists(PROCESSED_PARQUET_FILE_PATH):
        print(f"Attempting to load pre-processed data from: {PROCESSED_PARQUET_FILE_PATH}")
        try:
            df = pd.read_parquet(PROCESSED_PARQUET_FILE_PATH)
            elapsed = time.time() - overall_start_time
            missing_cols = [col for col in expected_cols_in_processed_parquet if col not in df.columns]
            if missing_cols:
                raise ValueError(f"Pre-processed Parquet is missing columns: {missing_cols}. Please run preprocessor or refresh data in app.")
            
            # --- Diagnostic for 'has_robot' after loading parquet ---
            if 'has_robot' in df.columns:
                robot_count_parquet = df['has_robot'].sum()
                print(f"DIAGNOSTIC (App - Parquet Load): 'has_robot' column found. Number of True values: {robot_count_parquet}")
                if 0 < robot_count_parquet < 10:
                     print(f"Sample 'has_robot' models (from parquet): {df[df['has_robot']]['id'].head().tolist()}")
            else:
                print("DIAGNOSTIC (App - Parquet Load): 'has_robot' column NOT FOUND.")
            # --- End Diagnostic ---

            msg = f"Successfully loaded pre-processed data in {elapsed:.2f}s. Shape: {df.shape}"
            print(msg)
            return df, True, msg
        except Exception as e:
            print(f"Could not load pre-processed Parquet: {e}. ")
            if force_refresh: print("Proceeding to fetch fresh data as force_refresh=True.")
            else:
                 err_msg = (f"Pre-processed data could not be loaded: {e}. "
                           "Please use 'Refresh Data from Hugging Face' button.")
                 return pd.DataFrame(), False, err_msg

    df_raw = None
    raw_data_source_msg = ""
    if force_refresh:
        print("force_refresh=True (Gradio). Fetching fresh data...")
        fetch_start = time.time()
        try:
            query = f"SELECT * FROM read_parquet('{HF_PARQUET_URL}')" # Ensure HF_PARQUET_URL is defined
            df_raw = duckdb.sql(query).df()
            if df_raw is None or df_raw.empty: raise ValueError("Fetched data is empty or None.")
            raw_data_source_msg = f"Fetched by Gradio in {time.time() - fetch_start:.2f}s. Rows: {len(df_raw)}"
            print(raw_data_source_msg)
        except Exception as e_hf:
            return pd.DataFrame(), False, f"Fatal error fetching from Hugging Face (Gradio): {e_hf}"
    else: 
        err_msg = (f"Pre-processed data '{PROCESSED_PARQUET_FILE_PATH}' not found/invalid. "
                   "Run preprocessor or use 'Refresh Data' button.")
        return pd.DataFrame(), False, err_msg

    print(f"Initiating processing for data newly fetched by Gradio. {raw_data_source_msg}")
    df = pd.DataFrame()
    proc_start = time.time()
    
    core_cols = {'id': str, 'downloads': float, 'downloadsAllTime': float, 'likes': float,
                 'pipeline_tag': str, 'tags': object, 'safetensors': object}
    for col, dtype in core_cols.items():
        if col in df_raw.columns:
            df[col] = df_raw[col]
            if dtype == float: df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0.0)
            elif dtype == str: df[col] = df[col].astype(str).fillna('')
        else:
            if col in ['downloads', 'downloadsAllTime', 'likes']: df[col] = 0.0
            elif col == 'pipeline_tag': df[col] = ''
            elif col == 'tags': df[col] = pd.Series([[] for _ in range(len(df_raw))])
            elif col == 'safetensors': df[col] = None 
            elif col == 'id': return pd.DataFrame(), False, "Critical: 'id' column missing."
    
    output_filesize_col_name = 'params'
    if output_filesize_col_name in df_raw.columns and pd.api.types.is_numeric_dtype(df_raw[output_filesize_col_name]):
        df[output_filesize_col_name] = pd.to_numeric(df_raw[output_filesize_col_name], errors='coerce').fillna(0.0)
    elif 'safetensors' in df.columns:
        safetensors_iter = df['safetensors']
        if tqdm_cls != tqdm :
             safetensors_iter = tqdm_cls(df['safetensors'], desc="Extracting model sizes (GB)")
        df[output_filesize_col_name] = [extract_model_size(s) for s in safetensors_iter]
        df[output_filesize_col_name] = pd.to_numeric(df[output_filesize_col_name], errors='coerce').fillna(0.0)
    else:
        df[output_filesize_col_name] = 0.0

    def get_size_category_gradio(size_gb_val):
        try: numeric_size_gb = float(size_gb_val)
        except (ValueError, TypeError): numeric_size_gb = 0.0
        if pd.isna(numeric_size_gb): numeric_size_gb = 0.0
        if 0 <= numeric_size_gb < 1: return "Small (<1GB)"
        elif 1 <= numeric_size_gb < 5: return "Medium (1-5GB)"
        elif 5 <= numeric_size_gb < 20: return "Large (5-20GB)"
        elif 20 <= numeric_size_gb < 50: return "X-Large (20-50GB)"
        elif numeric_size_gb >= 50: return "XX-Large (>50GB)"
        else: return "Small (<1GB)"
    df['size_category'] = df[output_filesize_col_name].apply(get_size_category_gradio)

    df['tags'] = process_tags_for_series(df['tags'])
    df['temp_tags_joined'] = df['tags'].apply(
        lambda tl: '~~~'.join(str(t).lower() for t in tl if pd.notna(t) and str(t).strip()) if isinstance(tl, list) else ''
    )
    tag_map = {
        'has_audio': ['audio'], 'has_speech': ['speech'], 'has_music': ['music'],
        'has_robot': ['robot', 'robotics'],
        'has_bio': ['bio'], 'has_med': ['medic', 'medical'],
        'has_series': ['series', 'time-series', 'timeseries'],
        'has_video': ['video'], 'has_image': ['image', 'vision'],
        'has_text': ['text', 'nlp', 'llm']
    }
    for col, kws in tag_map.items():
        pattern = '|'.join(kws)
        df[col] = df['temp_tags_joined'].str.contains(pattern, na=False, case=False, regex=True)
    df['has_science'] = (
        df['temp_tags_joined'].str.contains('science', na=False, case=False, regex=True) &
        ~df['temp_tags_joined'].str.contains('bigscience', na=False, case=False, regex=True)
    )
    del df['temp_tags_joined']
    df['is_audio_speech'] = (df['has_audio'] | df['has_speech'] |
                            df['pipeline_tag'].str.contains('audio|speech', case=False, na=False, regex=True))
    df['is_biomed'] = df['has_bio'] | df['has_med']
    df['organization'] = df['id'].apply(extract_org_from_id)

    if 'safetensors' in df.columns and \
       not (output_filesize_col_name in df_raw.columns and pd.api.types.is_numeric_dtype(df_raw[output_filesize_col_name])):
        df = df.drop(columns=['safetensors'], errors='ignore')
    
    # --- Diagnostic for 'has_robot' after app-side processing (force_refresh path) ---
    if force_refresh and 'has_robot' in df.columns:
        robot_count_app_proc = df['has_robot'].sum()
        print(f"DIAGNOSTIC (App - Force Refresh Processing): 'has_robot' column processed. Number of True values: {robot_count_app_proc}")
        if 0 < robot_count_app_proc < 10:
            print(f"Sample 'has_robot' models (App processed): {df[df['has_robot']]['id'].head().tolist()}")
    # --- End Diagnostic ---

    print(f"Data processing by Gradio completed in {time.time() - proc_start:.2f}s.")
    
    total_elapsed = time.time() - overall_start_time
    final_msg = f"{raw_data_source_msg}. Processing by Gradio took {time.time() - proc_start:.2f}s. Total: {total_elapsed:.2f}s. Shape: {df.shape}"
    print(final_msg)
    return df, True, final_msg


def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, size_filter=None, skip_orgs=None):
    if df is None or df.empty: return pd.DataFrame()
    filtered_df = df.copy()
    col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot",
                "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science",
                "Video": "has_video", "Images": "has_image", "Text": "has_text"}
    
    # --- Diagnostic within make_treemap_data ---
    if 'has_robot' in filtered_df.columns:
        initial_robot_count = filtered_df['has_robot'].sum()
        print(f"DIAGNOSTIC (make_treemap_data entry): Input df has {initial_robot_count} 'has_robot' models.")
    else:
        print("DIAGNOSTIC (make_treemap_data entry): 'has_robot' column NOT in input df.")
    # --- End Diagnostic ---

    if tag_filter and tag_filter in col_map:
        target_col = col_map[tag_filter]
        if target_col in filtered_df.columns:
            # --- Diagnostic for specific 'Robotics' filter application ---
            if tag_filter == "Robotics":
                count_before_robot_filter = filtered_df[target_col].sum()
                print(f"DIAGNOSTIC (make_treemap_data): Applying 'Robotics' filter. Models with '{target_col}'=True before this filter step: {count_before_robot_filter}")
            # --- End Diagnostic ---
            filtered_df = filtered_df[filtered_df[target_col]]
            if tag_filter == "Robotics":
                 print(f"DIAGNOSTIC (make_treemap_data): After 'Robotics' filter ({target_col}), df rows: {len(filtered_df)}")
        else:
            print(f"Warning: Tag filter column '{col_map[tag_filter]}' not found in DataFrame.")
    if pipeline_filter:
        if "pipeline_tag" in filtered_df.columns:
            filtered_df = filtered_df[filtered_df["pipeline_tag"] == pipeline_filter]
        else:
            print(f"Warning: 'pipeline_tag' column not found for filtering.")
    if size_filter and size_filter != "None" and size_filter in MODEL_SIZE_RANGES.keys():
        if 'size_category' in filtered_df.columns:
            filtered_df = filtered_df[filtered_df['size_category'] == size_filter]
        else:
            print("Warning: 'size_category' column not found for filtering.")
    if skip_orgs and len(skip_orgs) > 0:
        if "organization" in filtered_df.columns:
            filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
        else:
            print("Warning: 'organization' column not found for filtering.")
    if filtered_df.empty: return pd.DataFrame()
    if count_by not in filtered_df.columns or not pd.api.types.is_numeric_dtype(filtered_df[count_by]):
        filtered_df[count_by] = pd.to_numeric(filtered_df.get(count_by), errors="coerce").fillna(0.0)
    org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
    top_orgs_list = org_totals.index.tolist()
    treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
    treemap_data["root"] = "models"
    treemap_data[count_by] = pd.to_numeric(treemap_data[count_by], errors="coerce").fillna(0.0) 
    return treemap_data

def create_treemap(treemap_data, count_by, title=None):
    if treemap_data.empty:
        fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1])
        fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25))
        return fig
    fig = px.treemap(
        treemap_data, path=["root", "organization", "id"], values=count_by,
        title=title or f"HuggingFace Models - {count_by.capitalize()} by Organization",
        color_discrete_sequence=px.colors.qualitative.Plotly
    )
    fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
    fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
    return fig

with gr.Blocks(title="HuggingFace Model Explorer", fill_width=True) as demo:
    models_data_state = gr.State(pd.DataFrame())
    loading_complete_state = gr.State(False)

    with gr.Row(): gr.Markdown("# HuggingFace Models TreeMap Visualization")
    with gr.Row():
        with gr.Column(scale=1):
            count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads")
            filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None")
            tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
            pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
            size_filter_dropdown = gr.Dropdown(label="Model Size Filter", choices=["None"] + list(MODEL_SIZE_RANGES.keys()), value="None")
            top_k_slider = gr.Slider(label="Number of Top Organizations", minimum=5, maximum=50, value=25, step=5)
            skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
            generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)
            refresh_data_button = gr.Button(value="Refresh Data from Hugging Face", variant="secondary")
        with gr.Column(scale=3):
            plot_output = gr.Plot()
            status_message_md = gr.Markdown("Initializing...")
            data_info_md = gr.Markdown("")

    def _update_button_interactivity(is_loaded_flag):
        return gr.update(interactive=is_loaded_flag)
    loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)

    def _toggle_filters_visibility(choice):
        return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter")
    filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown])

    def ui_load_data_controller(force_refresh_ui_trigger=False, progress=gr.Progress(track_tqdm=True)):
        print(f"ui_load_data_controller called with force_refresh_ui_trigger={force_refresh_ui_trigger}")
        status_msg_ui = "Loading data..."
        data_info_text = ""
        current_df = pd.DataFrame()
        load_success_flag = False
        data_as_of_date_display = "N/A"
        try:
            current_df, load_success_flag, status_msg_from_load = load_models_data(
                force_refresh=force_refresh_ui_trigger, tqdm_cls=progress.tqdm
            )
            if load_success_flag:
                if force_refresh_ui_trigger: 
                    data_as_of_date_display = pd.Timestamp.now(tz='UTC').strftime('%B %d, %Y, %H:%M:%S %Z')
                elif 'data_download_timestamp' in current_df.columns and not current_df.empty and pd.notna(current_df['data_download_timestamp'].iloc[0]):
                    timestamp_from_parquet = pd.to_datetime(current_df['data_download_timestamp'].iloc[0])
                    if timestamp_from_parquet.tzinfo is None:
                        timestamp_from_parquet = timestamp_from_parquet.tz_localize('UTC')
                    data_as_of_date_display = timestamp_from_parquet.strftime('%B %d, %Y, %H:%M:%S %Z')
                else:
                    data_as_of_date_display = "Pre-processed (date unavailable)"
                
                size_dist_lines = []
                if 'size_category' in current_df.columns:
                    for cat in MODEL_SIZE_RANGES.keys():
                        count = (current_df['size_category'] == cat).sum()
                        size_dist_lines.append(f"  - {cat}: {count:,} models")
                else: size_dist_lines.append("  - Size category information not available.")
                size_dist = "\n".join(size_dist_lines)
                
                data_info_text = (f"### Data Information\n"
                                  f"- Overall Status: {status_msg_from_load}\n" 
                                  f"- Total models loaded: {len(current_df):,}\n"
                                  f"- Data as of: {data_as_of_date_display}\n"
                                  f"- Size categories:\n{size_dist}")
                
                # # --- MODIFICATION: Add 'has_robot' count to UI data_info_text ---
                # if not current_df.empty and 'has_robot' in current_df.columns:
                #     robot_true_count = current_df['has_robot'].sum()
                #     data_info_text += f"\n- **Models flagged 'has_robot'**: {robot_true_count}"
                #     if 0 < robot_true_count <= 10: # If a few are found, list some IDs
                #         sample_robot_ids = current_df[current_df['has_robot']]['id'].head(5).tolist()
                #         data_info_text += f"\n  - Sample 'has_robot' model IDs: `{', '.join(sample_robot_ids)}`"
                # elif not current_df.empty:
                #     data_info_text += "\n- **Models flagged 'has_robot'**: 'has_robot' column not found in loaded data."
                # # --- END MODIFICATION ---

                status_msg_ui = "Data loaded successfully. Ready to generate plot."
            else: 
                data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
                status_msg_ui = status_msg_from_load 
        except Exception as e:
            status_msg_ui = f"An unexpected error occurred in ui_load_data_controller: {str(e)}"
            data_info_text = f"### Critical Error\n- {status_msg_ui}"
            print(f"Critical error in ui_load_data_controller: {e}")
            load_success_flag = False 
        return current_df, load_success_flag, data_info_text, status_msg_ui

    def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice, 
                                   size_choice, k_orgs, skip_orgs_input, df_current_models):
        if df_current_models is None or df_current_models.empty:
            empty_fig = create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded")
            error_msg = "Model data is not loaded or is empty. Please load or refresh data first."
            gr.Warning(error_msg)
            return empty_fig, error_msg
        tag_to_use = tag_choice if filter_type == "Tag Filter" else None
        pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
        size_to_use = size_choice if size_choice != "None" else None
        orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()] if skip_orgs_input else []
        
        # --- Diagnostic before calling make_treemap_data ---
        if 'has_robot' in df_current_models.columns:
            robot_count_before_treemap = df_current_models['has_robot'].sum()
            print(f"DIAGNOSTIC (ui_generate_plot_controller): df_current_models entering make_treemap_data has {robot_count_before_treemap} 'has_robot' models.")
        # --- End Diagnostic ---

        treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, size_to_use, orgs_to_skip)
        
        title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
        chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization"
        plotly_fig = create_treemap(treemap_df, metric_choice, chart_title)
        if treemap_df.empty:
            plot_stats_md = "No data matches the selected filters. Try adjusting your filters."
        else:
            total_items_in_plot = len(treemap_df['id'].unique())
            total_value_in_plot = treemap_df[metric_choice].sum()
            plot_stats_md = (f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}")
        return plotly_fig, plot_stats_md

    demo.load(
        fn=lambda progress=gr.Progress(track_tqdm=True): ui_load_data_controller(force_refresh_ui_trigger=False, progress=progress),
        inputs=[],
        outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
    )
    refresh_data_button.click(
        fn=lambda progress=gr.Progress(track_tqdm=True): ui_load_data_controller(force_refresh_ui_trigger=True, progress=progress),
        inputs=[], 
        outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
    )
    generate_plot_button.click(
        fn=ui_generate_plot_controller,
        inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
                size_filter_dropdown, top_k_slider, skip_orgs_textbox, models_data_state],
        outputs=[plot_output, status_message_md]
    )

if __name__ == "__main__":
    if not os.path.exists(PROCESSED_PARQUET_FILE_PATH):
        print(f"WARNING: Pre-processed data file '{PROCESSED_PARQUET_FILE_PATH}' not found.")
        print("It is highly recommended to run the preprocessing script (e.g., preprocess.py) first.") # Corrected script name
    else:
        print(f"Found pre-processed data file: '{PROCESSED_PARQUET_FILE_PATH}'.")
    demo.launch()

# --- END OF FILE app.py ---