File size: 31,071 Bytes
9d2f4f2 bbf45d0 7262ace 9d2f4f2 bbf45d0 9d2f4f2 7262ace 9d2f4f2 7262ace 9d2f4f2 7262ace 9d2f4f2 bbf45d0 9d2f4f2 bbf45d0 9d2f4f2 bbf45d0 9d2f4f2 bbf45d0 9d2f4f2 bbf45d0 9d2f4f2 bbf45d0 9d2f4f2 7262ace 9d2f4f2 7262ace 9d2f4f2 7262ace 9d2f4f2 7262ace 9d2f4f2 bbf45d0 7262ace 9d2f4f2 7262ace 9d2f4f2 7262ace 9d2f4f2 bbf45d0 9d2f4f2 7262ace 9d2f4f2 7262ace 9d2f4f2 7262ace 9d2f4f2 7262ace 9d2f4f2 7262ace bbf45d0 9d2f4f2 bbf45d0 9d2f4f2 7262ace 9d2f4f2 7262ace 9d2f4f2 7262ace 9d2f4f2 7262ace 9d2f4f2 7262ace 9d2f4f2 7262ace 9d2f4f2 7262ace 9d2f4f2 bbf45d0 9d2f4f2 7262ace 9d2f4f2 7262ace bbf45d0 9d2f4f2 7262ace 9d2f4f2 bbf45d0 9d2f4f2 bbf45d0 9d2f4f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
# --- START OF FILE app.py ---
import json
import gradio as gr
import pandas as pd
import plotly.express as px
import os
import numpy as np
import duckdb
from tqdm.auto import tqdm # Standard tqdm for console, gr.Progress will track it
import time
import ast # For safely evaluating string representations of lists/dicts
# --- Constants ---
MODEL_SIZE_RANGES = {
"Small (<1GB)": (0, 1), "Medium (1-5GB)": (1, 5), "Large (5-20GB)": (5, 20),
"X-Large (20-50GB)": (20, 50), "XX-Large (>50GB)": (50, float('inf'))
}
PROCESSED_PARQUET_FILE_PATH = "models_processed.parquet"
HF_PARQUET_URL = 'https://huggingface.co/datasets/cfahlgren1/hub-stats/resolve/main/models.parquet' # Added for completeness within app.py context
TAG_FILTER_CHOICES = [
"Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images",
"Text", "Biomedical", "Sciences"
]
PIPELINE_TAGS = [
'text-generation', 'text-to-image', 'text-classification', 'text2text-generation',
'audio-to-audio', 'feature-extraction', 'image-classification', 'translation',
'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition',
'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering',
'image-feature-extraction', 'summarization', 'zero-shot-image-classification',
'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text',
'audio-classification', 'visual-question-answering', 'text-to-video',
'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video',
'multiple-choice', 'unconditional-image-generation', 'video-classification',
'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text',
'table-question-answering',
]
def extract_model_size(safetensors_data):
try:
if pd.isna(safetensors_data): return 0.0
data_to_parse = safetensors_data
if isinstance(safetensors_data, str):
try:
if (safetensors_data.startswith('{') and safetensors_data.endswith('}')) or \
(safetensors_data.startswith('[') and safetensors_data.endswith(']')):
data_to_parse = ast.literal_eval(safetensors_data)
else: data_to_parse = json.loads(safetensors_data)
except: return 0.0
if isinstance(data_to_parse, dict) and 'total' in data_to_parse:
try:
total_bytes_val = data_to_parse['total']
size_bytes = float(total_bytes_val)
return size_bytes / (1024 * 1024 * 1024)
except (ValueError, TypeError): pass
return 0.0
except: return 0.0
def extract_org_from_id(model_id):
if pd.isna(model_id): return "unaffiliated"
model_id_str = str(model_id)
return model_id_str.split("/")[0] if "/" in model_id_str else "unaffiliated"
def process_tags_for_series(series_of_tags_values):
processed_tags_accumulator = []
for i, tags_value_from_series in enumerate(tqdm(series_of_tags_values, desc="Standardizing Tags", leave=False, unit="row")):
temp_processed_list_for_row = []
current_value_for_error_msg = str(tags_value_from_series)[:200] # Truncate for long error messages
try:
# Order of checks is important!
# 1. Handle explicit Python lists first
if isinstance(tags_value_from_series, list):
current_tags_in_list = []
for idx_tag, tag_item in enumerate(tags_value_from_series):
try:
# Ensure item is not NaN before string conversion if it might be a float NaN in a list
if pd.isna(tag_item): continue
str_tag = str(tag_item)
stripped_tag = str_tag.strip()
if stripped_tag:
current_tags_in_list.append(stripped_tag)
except Exception as e_inner_list_proc:
print(f"ERROR processing item '{tag_item}' (type: {type(tag_item)}) within a list for row {i}. Error: {e_inner_list_proc}. Original list: {current_value_for_error_msg}")
temp_processed_list_for_row = current_tags_in_list
# 2. Handle NumPy arrays
elif isinstance(tags_value_from_series, np.ndarray):
# Convert to list, then process elements, handling potential NaNs within the array
current_tags_in_list = []
for idx_tag, tag_item in enumerate(tags_value_from_series.tolist()): # .tolist() is crucial
try:
if pd.isna(tag_item): continue # Check for NaN after converting to Python type
str_tag = str(tag_item)
stripped_tag = str_tag.strip()
if stripped_tag:
current_tags_in_list.append(stripped_tag)
except Exception as e_inner_array_proc:
print(f"ERROR processing item '{tag_item}' (type: {type(tag_item)}) within a NumPy array for row {i}. Error: {e_inner_array_proc}. Original array: {current_value_for_error_msg}")
temp_processed_list_for_row = current_tags_in_list
# 3. Handle simple None or pd.NA after lists and arrays (which might contain pd.NA elements handled above)
elif tags_value_from_series is None or pd.isna(tags_value_from_series): # Now pd.isna is safe for scalars
temp_processed_list_for_row = []
# 4. Handle strings (could be JSON-like, list-like, or comma-separated)
elif isinstance(tags_value_from_series, str):
processed_str_tags = []
# Attempt ast.literal_eval for strings that look like lists/tuples
if (tags_value_from_series.startswith('[') and tags_value_from_series.endswith(']')) or \
(tags_value_from_series.startswith('(') and tags_value_from_series.endswith(')')):
try:
evaluated_tags = ast.literal_eval(tags_value_from_series)
if isinstance(evaluated_tags, (list, tuple)): # Check if eval result is a list/tuple
# Recursively process this evaluated list/tuple, as its elements could be complex
# For simplicity here, assume elements are simple strings after eval
current_eval_list = []
for tag_item in evaluated_tags:
if pd.isna(tag_item): continue
str_tag = str(tag_item).strip()
if str_tag: current_eval_list.append(str_tag)
processed_str_tags = current_eval_list
except (ValueError, SyntaxError):
pass # If ast.literal_eval fails, let it fall to JSON or comma split
# If ast.literal_eval didn't populate, try JSON
if not processed_str_tags:
try:
json_tags = json.loads(tags_value_from_series)
if isinstance(json_tags, list):
# Similar to above, assume elements are simple strings after JSON parsing
current_json_list = []
for tag_item in json_tags:
if pd.isna(tag_item): continue
str_tag = str(tag_item).strip()
if str_tag: current_json_list.append(str_tag)
processed_str_tags = current_json_list
except json.JSONDecodeError:
# If not a valid JSON list, fall back to comma splitting as the final string strategy
processed_str_tags = [tag.strip() for tag in tags_value_from_series.split(',') if tag.strip()]
except Exception as e_json_other:
print(f"ERROR during JSON processing for string '{current_value_for_error_msg}' for row {i}. Error: {e_json_other}")
processed_str_tags = [tag.strip() for tag in tags_value_from_series.split(',') if tag.strip()] # Fallback
temp_processed_list_for_row = processed_str_tags
# 5. Fallback for other scalar types (e.g., int, float that are not NaN)
else:
# This path is for non-list, non-ndarray, non-None/NaN, non-string types.
# Or for NaNs that slipped through if they are not None or pd.NA (e.g. float('nan'))
if pd.isna(tags_value_from_series): # Catch any remaining NaNs like float('nan')
temp_processed_list_for_row = []
else:
str_val = str(tags_value_from_series).strip()
temp_processed_list_for_row = [str_val] if str_val else []
processed_tags_accumulator.append(temp_processed_list_for_row)
except Exception as e_outer_tag_proc:
print(f"CRITICAL UNHANDLED ERROR processing row {i}: value '{current_value_for_error_msg}' (type: {type(tags_value_from_series)}). Error: {e_outer_tag_proc}. Appending [].")
processed_tags_accumulator.append([])
return processed_tags_accumulator
def load_models_data(force_refresh=False, tqdm_cls=None):
if tqdm_cls is None: tqdm_cls = tqdm
overall_start_time = time.time()
print(f"Gradio load_models_data called with force_refresh={force_refresh}")
expected_cols_in_processed_parquet = [
'id', 'downloads', 'downloadsAllTime', 'likes', 'pipeline_tag', 'tags', 'params',
'size_category', 'organization', 'has_audio', 'has_speech', 'has_music',
'has_robot', 'has_bio', 'has_med', 'has_series', 'has_video', 'has_image',
'has_text', 'has_science', 'is_audio_speech', 'is_biomed',
'data_download_timestamp'
]
if not force_refresh and os.path.exists(PROCESSED_PARQUET_FILE_PATH):
print(f"Attempting to load pre-processed data from: {PROCESSED_PARQUET_FILE_PATH}")
try:
df = pd.read_parquet(PROCESSED_PARQUET_FILE_PATH)
elapsed = time.time() - overall_start_time
missing_cols = [col for col in expected_cols_in_processed_parquet if col not in df.columns]
if missing_cols:
raise ValueError(f"Pre-processed Parquet is missing columns: {missing_cols}. Please run preprocessor or refresh data in app.")
# --- Diagnostic for 'has_robot' after loading parquet ---
if 'has_robot' in df.columns:
robot_count_parquet = df['has_robot'].sum()
print(f"DIAGNOSTIC (App - Parquet Load): 'has_robot' column found. Number of True values: {robot_count_parquet}")
if 0 < robot_count_parquet < 10:
print(f"Sample 'has_robot' models (from parquet): {df[df['has_robot']]['id'].head().tolist()}")
else:
print("DIAGNOSTIC (App - Parquet Load): 'has_robot' column NOT FOUND.")
# --- End Diagnostic ---
msg = f"Successfully loaded pre-processed data in {elapsed:.2f}s. Shape: {df.shape}"
print(msg)
return df, True, msg
except Exception as e:
print(f"Could not load pre-processed Parquet: {e}. ")
if force_refresh: print("Proceeding to fetch fresh data as force_refresh=True.")
else:
err_msg = (f"Pre-processed data could not be loaded: {e}. "
"Please use 'Refresh Data from Hugging Face' button.")
return pd.DataFrame(), False, err_msg
df_raw = None
raw_data_source_msg = ""
if force_refresh:
print("force_refresh=True (Gradio). Fetching fresh data...")
fetch_start = time.time()
try:
query = f"SELECT * FROM read_parquet('{HF_PARQUET_URL}')" # Ensure HF_PARQUET_URL is defined
df_raw = duckdb.sql(query).df()
if df_raw is None or df_raw.empty: raise ValueError("Fetched data is empty or None.")
raw_data_source_msg = f"Fetched by Gradio in {time.time() - fetch_start:.2f}s. Rows: {len(df_raw)}"
print(raw_data_source_msg)
except Exception as e_hf:
return pd.DataFrame(), False, f"Fatal error fetching from Hugging Face (Gradio): {e_hf}"
else:
err_msg = (f"Pre-processed data '{PROCESSED_PARQUET_FILE_PATH}' not found/invalid. "
"Run preprocessor or use 'Refresh Data' button.")
return pd.DataFrame(), False, err_msg
print(f"Initiating processing for data newly fetched by Gradio. {raw_data_source_msg}")
df = pd.DataFrame()
proc_start = time.time()
core_cols = {'id': str, 'downloads': float, 'downloadsAllTime': float, 'likes': float,
'pipeline_tag': str, 'tags': object, 'safetensors': object}
for col, dtype in core_cols.items():
if col in df_raw.columns:
df[col] = df_raw[col]
if dtype == float: df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0.0)
elif dtype == str: df[col] = df[col].astype(str).fillna('')
else:
if col in ['downloads', 'downloadsAllTime', 'likes']: df[col] = 0.0
elif col == 'pipeline_tag': df[col] = ''
elif col == 'tags': df[col] = pd.Series([[] for _ in range(len(df_raw))])
elif col == 'safetensors': df[col] = None
elif col == 'id': return pd.DataFrame(), False, "Critical: 'id' column missing."
output_filesize_col_name = 'params'
if output_filesize_col_name in df_raw.columns and pd.api.types.is_numeric_dtype(df_raw[output_filesize_col_name]):
df[output_filesize_col_name] = pd.to_numeric(df_raw[output_filesize_col_name], errors='coerce').fillna(0.0)
elif 'safetensors' in df.columns:
safetensors_iter = df['safetensors']
if tqdm_cls != tqdm :
safetensors_iter = tqdm_cls(df['safetensors'], desc="Extracting model sizes (GB)")
df[output_filesize_col_name] = [extract_model_size(s) for s in safetensors_iter]
df[output_filesize_col_name] = pd.to_numeric(df[output_filesize_col_name], errors='coerce').fillna(0.0)
else:
df[output_filesize_col_name] = 0.0
def get_size_category_gradio(size_gb_val):
try: numeric_size_gb = float(size_gb_val)
except (ValueError, TypeError): numeric_size_gb = 0.0
if pd.isna(numeric_size_gb): numeric_size_gb = 0.0
if 0 <= numeric_size_gb < 1: return "Small (<1GB)"
elif 1 <= numeric_size_gb < 5: return "Medium (1-5GB)"
elif 5 <= numeric_size_gb < 20: return "Large (5-20GB)"
elif 20 <= numeric_size_gb < 50: return "X-Large (20-50GB)"
elif numeric_size_gb >= 50: return "XX-Large (>50GB)"
else: return "Small (<1GB)"
df['size_category'] = df[output_filesize_col_name].apply(get_size_category_gradio)
df['tags'] = process_tags_for_series(df['tags'])
df['temp_tags_joined'] = df['tags'].apply(
lambda tl: '~~~'.join(str(t).lower() for t in tl if pd.notna(t) and str(t).strip()) if isinstance(tl, list) else ''
)
tag_map = {
'has_audio': ['audio'], 'has_speech': ['speech'], 'has_music': ['music'],
'has_robot': ['robot', 'robotics'],
'has_bio': ['bio'], 'has_med': ['medic', 'medical'],
'has_series': ['series', 'time-series', 'timeseries'],
'has_video': ['video'], 'has_image': ['image', 'vision'],
'has_text': ['text', 'nlp', 'llm']
}
for col, kws in tag_map.items():
pattern = '|'.join(kws)
df[col] = df['temp_tags_joined'].str.contains(pattern, na=False, case=False, regex=True)
df['has_science'] = (
df['temp_tags_joined'].str.contains('science', na=False, case=False, regex=True) &
~df['temp_tags_joined'].str.contains('bigscience', na=False, case=False, regex=True)
)
del df['temp_tags_joined']
df['is_audio_speech'] = (df['has_audio'] | df['has_speech'] |
df['pipeline_tag'].str.contains('audio|speech', case=False, na=False, regex=True))
df['is_biomed'] = df['has_bio'] | df['has_med']
df['organization'] = df['id'].apply(extract_org_from_id)
if 'safetensors' in df.columns and \
not (output_filesize_col_name in df_raw.columns and pd.api.types.is_numeric_dtype(df_raw[output_filesize_col_name])):
df = df.drop(columns=['safetensors'], errors='ignore')
# --- Diagnostic for 'has_robot' after app-side processing (force_refresh path) ---
if force_refresh and 'has_robot' in df.columns:
robot_count_app_proc = df['has_robot'].sum()
print(f"DIAGNOSTIC (App - Force Refresh Processing): 'has_robot' column processed. Number of True values: {robot_count_app_proc}")
if 0 < robot_count_app_proc < 10:
print(f"Sample 'has_robot' models (App processed): {df[df['has_robot']]['id'].head().tolist()}")
# --- End Diagnostic ---
print(f"Data processing by Gradio completed in {time.time() - proc_start:.2f}s.")
total_elapsed = time.time() - overall_start_time
final_msg = f"{raw_data_source_msg}. Processing by Gradio took {time.time() - proc_start:.2f}s. Total: {total_elapsed:.2f}s. Shape: {df.shape}"
print(final_msg)
return df, True, final_msg
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, size_filter=None, skip_orgs=None):
if df is None or df.empty: return pd.DataFrame()
filtered_df = df.copy()
col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot",
"Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science",
"Video": "has_video", "Images": "has_image", "Text": "has_text"}
# --- Diagnostic within make_treemap_data ---
if 'has_robot' in filtered_df.columns:
initial_robot_count = filtered_df['has_robot'].sum()
print(f"DIAGNOSTIC (make_treemap_data entry): Input df has {initial_robot_count} 'has_robot' models.")
else:
print("DIAGNOSTIC (make_treemap_data entry): 'has_robot' column NOT in input df.")
# --- End Diagnostic ---
if tag_filter and tag_filter in col_map:
target_col = col_map[tag_filter]
if target_col in filtered_df.columns:
# --- Diagnostic for specific 'Robotics' filter application ---
if tag_filter == "Robotics":
count_before_robot_filter = filtered_df[target_col].sum()
print(f"DIAGNOSTIC (make_treemap_data): Applying 'Robotics' filter. Models with '{target_col}'=True before this filter step: {count_before_robot_filter}")
# --- End Diagnostic ---
filtered_df = filtered_df[filtered_df[target_col]]
if tag_filter == "Robotics":
print(f"DIAGNOSTIC (make_treemap_data): After 'Robotics' filter ({target_col}), df rows: {len(filtered_df)}")
else:
print(f"Warning: Tag filter column '{col_map[tag_filter]}' not found in DataFrame.")
if pipeline_filter:
if "pipeline_tag" in filtered_df.columns:
filtered_df = filtered_df[filtered_df["pipeline_tag"] == pipeline_filter]
else:
print(f"Warning: 'pipeline_tag' column not found for filtering.")
if size_filter and size_filter != "None" and size_filter in MODEL_SIZE_RANGES.keys():
if 'size_category' in filtered_df.columns:
filtered_df = filtered_df[filtered_df['size_category'] == size_filter]
else:
print("Warning: 'size_category' column not found for filtering.")
if skip_orgs and len(skip_orgs) > 0:
if "organization" in filtered_df.columns:
filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
else:
print("Warning: 'organization' column not found for filtering.")
if filtered_df.empty: return pd.DataFrame()
if count_by not in filtered_df.columns or not pd.api.types.is_numeric_dtype(filtered_df[count_by]):
filtered_df[count_by] = pd.to_numeric(filtered_df.get(count_by), errors="coerce").fillna(0.0)
org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
top_orgs_list = org_totals.index.tolist()
treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
treemap_data["root"] = "models"
treemap_data[count_by] = pd.to_numeric(treemap_data[count_by], errors="coerce").fillna(0.0)
return treemap_data
def create_treemap(treemap_data, count_by, title=None):
if treemap_data.empty:
fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1])
fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25))
return fig
fig = px.treemap(
treemap_data, path=["root", "organization", "id"], values=count_by,
title=title or f"HuggingFace Models - {count_by.capitalize()} by Organization",
color_discrete_sequence=px.colors.qualitative.Plotly
)
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
return fig
with gr.Blocks(title="HuggingFace Model Explorer", fill_width=True) as demo:
models_data_state = gr.State(pd.DataFrame())
loading_complete_state = gr.State(False)
with gr.Row(): gr.Markdown("# HuggingFace Models TreeMap Visualization")
with gr.Row():
with gr.Column(scale=1):
count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads")
filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None")
tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
size_filter_dropdown = gr.Dropdown(label="Model Size Filter", choices=["None"] + list(MODEL_SIZE_RANGES.keys()), value="None")
top_k_slider = gr.Slider(label="Number of Top Organizations", minimum=5, maximum=50, value=25, step=5)
skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)
refresh_data_button = gr.Button(value="Refresh Data from Hugging Face", variant="secondary")
with gr.Column(scale=3):
plot_output = gr.Plot()
status_message_md = gr.Markdown("Initializing...")
data_info_md = gr.Markdown("")
def _update_button_interactivity(is_loaded_flag):
return gr.update(interactive=is_loaded_flag)
loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)
def _toggle_filters_visibility(choice):
return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter")
filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown])
def ui_load_data_controller(force_refresh_ui_trigger=False, progress=gr.Progress(track_tqdm=True)):
print(f"ui_load_data_controller called with force_refresh_ui_trigger={force_refresh_ui_trigger}")
status_msg_ui = "Loading data..."
data_info_text = ""
current_df = pd.DataFrame()
load_success_flag = False
data_as_of_date_display = "N/A"
try:
current_df, load_success_flag, status_msg_from_load = load_models_data(
force_refresh=force_refresh_ui_trigger, tqdm_cls=progress.tqdm
)
if load_success_flag:
if force_refresh_ui_trigger:
data_as_of_date_display = pd.Timestamp.now(tz='UTC').strftime('%B %d, %Y, %H:%M:%S %Z')
elif 'data_download_timestamp' in current_df.columns and not current_df.empty and pd.notna(current_df['data_download_timestamp'].iloc[0]):
timestamp_from_parquet = pd.to_datetime(current_df['data_download_timestamp'].iloc[0])
if timestamp_from_parquet.tzinfo is None:
timestamp_from_parquet = timestamp_from_parquet.tz_localize('UTC')
data_as_of_date_display = timestamp_from_parquet.strftime('%B %d, %Y, %H:%M:%S %Z')
else:
data_as_of_date_display = "Pre-processed (date unavailable)"
size_dist_lines = []
if 'size_category' in current_df.columns:
for cat in MODEL_SIZE_RANGES.keys():
count = (current_df['size_category'] == cat).sum()
size_dist_lines.append(f" - {cat}: {count:,} models")
else: size_dist_lines.append(" - Size category information not available.")
size_dist = "\n".join(size_dist_lines)
data_info_text = (f"### Data Information\n"
f"- Overall Status: {status_msg_from_load}\n"
f"- Total models loaded: {len(current_df):,}\n"
f"- Data as of: {data_as_of_date_display}\n"
f"- Size categories:\n{size_dist}")
# # --- MODIFICATION: Add 'has_robot' count to UI data_info_text ---
# if not current_df.empty and 'has_robot' in current_df.columns:
# robot_true_count = current_df['has_robot'].sum()
# data_info_text += f"\n- **Models flagged 'has_robot'**: {robot_true_count}"
# if 0 < robot_true_count <= 10: # If a few are found, list some IDs
# sample_robot_ids = current_df[current_df['has_robot']]['id'].head(5).tolist()
# data_info_text += f"\n - Sample 'has_robot' model IDs: `{', '.join(sample_robot_ids)}`"
# elif not current_df.empty:
# data_info_text += "\n- **Models flagged 'has_robot'**: 'has_robot' column not found in loaded data."
# # --- END MODIFICATION ---
status_msg_ui = "Data loaded successfully. Ready to generate plot."
else:
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
status_msg_ui = status_msg_from_load
except Exception as e:
status_msg_ui = f"An unexpected error occurred in ui_load_data_controller: {str(e)}"
data_info_text = f"### Critical Error\n- {status_msg_ui}"
print(f"Critical error in ui_load_data_controller: {e}")
load_success_flag = False
return current_df, load_success_flag, data_info_text, status_msg_ui
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
size_choice, k_orgs, skip_orgs_input, df_current_models):
if df_current_models is None or df_current_models.empty:
empty_fig = create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded")
error_msg = "Model data is not loaded or is empty. Please load or refresh data first."
gr.Warning(error_msg)
return empty_fig, error_msg
tag_to_use = tag_choice if filter_type == "Tag Filter" else None
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
size_to_use = size_choice if size_choice != "None" else None
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()] if skip_orgs_input else []
# --- Diagnostic before calling make_treemap_data ---
if 'has_robot' in df_current_models.columns:
robot_count_before_treemap = df_current_models['has_robot'].sum()
print(f"DIAGNOSTIC (ui_generate_plot_controller): df_current_models entering make_treemap_data has {robot_count_before_treemap} 'has_robot' models.")
# --- End Diagnostic ---
treemap_df = make_treemap_data(df_current_models, metric_choice, k_orgs, tag_to_use, pipeline_to_use, size_to_use, orgs_to_skip)
title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization"
plotly_fig = create_treemap(treemap_df, metric_choice, chart_title)
if treemap_df.empty:
plot_stats_md = "No data matches the selected filters. Try adjusting your filters."
else:
total_items_in_plot = len(treemap_df['id'].unique())
total_value_in_plot = treemap_df[metric_choice].sum()
plot_stats_md = (f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}")
return plotly_fig, plot_stats_md
demo.load(
fn=lambda progress=gr.Progress(track_tqdm=True): ui_load_data_controller(force_refresh_ui_trigger=False, progress=progress),
inputs=[],
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
)
refresh_data_button.click(
fn=lambda progress=gr.Progress(track_tqdm=True): ui_load_data_controller(force_refresh_ui_trigger=True, progress=progress),
inputs=[],
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md]
)
generate_plot_button.click(
fn=ui_generate_plot_controller,
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
size_filter_dropdown, top_k_slider, skip_orgs_textbox, models_data_state],
outputs=[plot_output, status_message_md]
)
if __name__ == "__main__":
if not os.path.exists(PROCESSED_PARQUET_FILE_PATH):
print(f"WARNING: Pre-processed data file '{PROCESSED_PARQUET_FILE_PATH}' not found.")
print("It is highly recommended to run the preprocessing script (e.g., preprocess.py) first.") # Corrected script name
else:
print(f"Found pre-processed data file: '{PROCESSED_PARQUET_FILE_PATH}'.")
demo.launch()
# --- END OF FILE app.py --- |