--- title: YOLO app_file: demo/hf_demo.py sdk: gradio sdk_version: 4.44.0 --- # YOLO: Official Implementation of YOLOv9, YOLOv7 [](https://yolo-docs.readthedocs.io/en/latest/?badge=latest)   [](https://github.com/WongKinYiu/YOLO/actions/workflows/develop.yaml) [](https://github.com/WongKinYiu/YOLO/actions/workflows/deploy.yaml) [](https://paperswithcode.com/sota/real-time-object-detection-on-coco) []() [](https://huggingface.co/spaces/henry000/YOLO) Welcome to the official implementation of YOLOv7 and YOLOv9. This repository will contains the complete codebase, pre-trained models, and detailed instructions for training and deploying YOLOv9. ## TL;DR - This is the official YOLO model implementation with an MIT License. - For quick deployment: you can directly install by pip+git: ```shell pip install git+https://github.com/WongKinYiu/YOLO.git yolo task.data.source=0 # source could be a single file, video, image folder, webcam ID ``` ## Introduction - [**YOLOv9**: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616) - [**YOLOv7**: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors](https://arxiv.org/abs/2207.02696) ## Installation To get started using YOLOv9's developer mode, we recommand you clone this repository and install the required dependencies: ```shell git clone git@github.com:WongKinYiu/YOLO.git cd YOLO pip install -r requirements.txt ``` ## Features
## Task These are simple examples. For more customization details, please refer to [Notebooks](examples) and lower-level modifications **[HOWTO](docs/HOWTO.md)**. ## Training To train YOLO on your machine/dataset: 1. Modify the configuration file `yolo/config/dataset/**.yaml` to point to your dataset. 2. Run the training script: ```shell python yolo/lazy.py task=train dataset=** use_wandb=True python yolo/lazy.py task=train task.data.batch_size=8 model=v9-c weight=False # or more args ``` ### Transfer Learning To perform transfer learning with YOLOv9: ```shell python yolo/lazy.py task=train task.data.batch_size=8 model=v9-c dataset={dataset_config} device={cpu, mps, cuda} ``` ### Inference To use a model for object detection, use: ```shell python yolo/lazy.py # if cloned from GitHub python yolo/lazy.py task=inference \ # default is inference name=AnyNameYouWant \ # AnyNameYouWant device=cpu \ # hardware cuda, cpu, mps model=v9-s \ # model version: v9-c, m, s task.nms.min_confidence=0.1 \ # nms config task.fast_inference=onnx \ # onnx, trt, deploy task.data.source=data/toy/images/train \ # file, dir, webcam +quite=True \ # Quite Output yolo task.data.source={Any Source} # if pip installed yolo task=inference task.data.source={Any} ``` ### Validation To validate model performance, or generate a json file in COCO format: ```shell python yolo/lazy.py task=validation python yolo/lazy.py task=validation dataset=toy ``` ## Contributing Contributions to the YOLO project are welcome! See [CONTRIBUTING](docs/CONTRIBUTING.md) for guidelines on how to contribute. ## Star History [](https://star-history.com/#WongKinYiu/YOLO&Date) ## Citations ``` @misc{wang2022yolov7, title={YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors}, author={Chien-Yao Wang and Alexey Bochkovskiy and Hong-Yuan Mark Liao}, year={2022}, eprint={2207.02696}, archivePrefix={arXiv}, primaryClass={id='cs.CV' full_name='Computer Vision and Pattern Recognition' is_active=True alt_name=None in_archive='cs' is_general=False description='Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.'} } @misc{wang2024yolov9, title={YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information}, author={Chien-Yao Wang and I-Hau Yeh and Hong-Yuan Mark Liao}, year={2024}, eprint={2402.13616}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` |