# YOLO: Official Implementation of YOLOv9, YOLOv7 ![GitHub License](https://img.shields.io/github/license/WongKinYiu/YOLO) ![WIP](https://img.shields.io/badge/status-WIP-orange) ![](https://img.shields.io/github/actions/workflow/status/WongKinYiu/YOLO/deploy.yaml) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/yolov9-learning-what-you-want-to-learn-using/real-time-object-detection-on-coco)](https://paperswithcode.com/sota/real-time-object-detection-on-coco) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)]() [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-green)](https://huggingface.co/spaces/henry000/YOLO) Welcome to the official implementation of YOLOv7 and YOLOv9. This repository will contains the complete codebase, pre-trained models, and detailed instructions for training and deploying YOLOv9. ## TL;DR - This is the official YOLO model implementation with an MIT License. - For quick deployment: you can directly install by pip+git: ```shell pip install git+https://github.com/WongKinYiu/YOLO.git yolo task.data.source=0 # source could be a single file, video, image folder, webcam ID ``` ## Introduction - [**YOLOv9**: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616) - [**YOLOv7**: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors](https://arxiv.org/abs/2207.02696) ## Installation To get started using YOLOv9's developer mode, we recommand you clone this repository and install the required dependencies: ```shell git clone git@github.com:WongKinYiu/YOLO.git cd YOLO pip install -r requirements.txt ``` ## Features
| Tools | pip ๐Ÿ | HuggingFace ๐Ÿค— | Docker ๐Ÿณ | | -------------------- | :----: | :--------------: | :-------: | | Compatibility | โœ… | โœ… | ๐Ÿงช | | Phase | Training | Validation | Inference | | ------------------- | :------: | :---------: | :-------: | | Supported | โœ… | โœ… | โœ… | | Device | CUDA | CPU | MPS | | ------------------ | :---------: | :-------: | :-------: | | PyTorch | v1.12 | v2.3+ | v1.12 | | ONNX | โœ… | โœ… | - | | TensorRT | โœ… | - | - | | OpenVINO | - | ๐Ÿงช | โ” |
## Task These are simple examples. For more customization details, please refer to [Notebooks](examples) and lower-level modifications **[HOWTO](docs/HOWTO.md)**. ## Training To train YOLO on your machine/dataset: 1. Modify the configuration file `yolo/config/dataset/**.yaml` to point to your dataset. 2. Run the training script: ```shell python yolo/lazy.py task=train dataset=** use_wandb=True python yolo/lazy.py task=train task.data.batch_size=8 model=v9-c weight=False # or more args ``` ### Transfer Learning To perform transfer learning with YOLOv9: ```shell python yolo/lazy.py task=train task.data.batch_size=8 model=v9-c dataset={dataset_config} device={cpu, mps, cuda} ``` ### Inference To use a model for object detection, use: ```shell python yolo/lazy.py # if cloned from GitHub python yolo/lazy.py task=inference \ # default is inference name=AnyNameYouWant \ # AnyNameYouWant device=cpu \ # hardware cuda, cpu, mps model=v9-s \ # model version: v9-c, m, s task.nms.min_confidence=0.1 \ # nms config task.fast_inference=onnx \ # onnx, trt, deploy task.data.source=data/toy/images/train \ # file, dir, webcam +quite=True \ # Quite Output yolo task.data.source={Any Source} # if pip installed yolo task=inference task.data.source={Any} ``` ### Validation To validate model performance, or generate a json file in COCO format: ```shell python yolo/lazy.py task=validation python yolo/lazy.py task=validation dataset=toy ``` ## Contributing Contributions to the YOLO project are welcome! See [CONTRIBUTING](docs/CONTRIBUTING.md) for guidelines on how to contribute. ### TODO Diagrams ```mermaid flowchart TB subgraph Features Taskv7-->Segmentation["#35 Segmentation"] Taskv7-->Classification["#34 Classification"] Taskv9-->Segmentation Taskv9-->Classification Trainv7 end subgraph Model MODELv7-->v7-X MODELv7-->v7-E6 MODELv7-->v7-E6E MODELv9-->v9-T MODELv9-->v9-S MODELv9-->v9-E end subgraph Bugs Fix-->Fix1["#12 mAP > 1"] Fix-->Fix2["v9 Gradient Bump"] Reply-->Reply1["#39"] Reply-->Reply2["#36"] end ``` ## Star History [![Star History Chart](https://api.star-history.com/svg?repos=WongKinYiu/YOLO&type=Date)](https://star-history.com/#WongKinYiu/YOLO&Date) ## Citations ``` @misc{wang2022yolov7, title={YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors}, author={Chien-Yao Wang and Alexey Bochkovskiy and Hong-Yuan Mark Liao}, year={2022}, eprint={2207.02696}, archivePrefix={arXiv}, primaryClass={id='cs.CV' full_name='Computer Vision and Pattern Recognition' is_active=True alt_name=None in_archive='cs' is_general=False description='Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.'} } @misc{wang2024yolov9, title={YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information}, author={Chien-Yao Wang and I-Hau Yeh and Hong-Yuan Mark Liao}, year={2024}, eprint={2402.13616}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```