# YOLO: Official Implementation of YOLOv9, YOLOv7 ![GitHub License](https://img.shields.io/github/license/WongKinYiu/YOLO) [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/henry000/YOLO) ## TL;DR - This is the official YOLO model implementation with an MIT License. - For quick deployment: you can enter directly in the terminal: ```shell pip install git+git@github.com:WongKinYiu/YOLO.git yolo task=inference task.source=0 # source could be a single file, video, image folder, webcam ID ``` ## Introduction - [**YOLOv9**: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616) - [**YOLOv7**: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors](https://arxiv.org/abs/2207.02696) ## Installation To get started with YOLOv9, clone this repository and install the required dependencies: ```shell git clone git@github.com:WongKinYiu/YOLO.git cd YOLO pip install -r requirements.txt ``` ## Features
| Tools | pip ๐Ÿ | HuggingFace ๐Ÿค— | Docker ๐Ÿณ | | -------------------- | :----: | :--------------: | :-------: | | Compatibility | โœ… | โœ… | ๐Ÿงช | | Phase | Training | Validation | Inference | | ------------------- | :------: | :---------: | :-------: | | Supported | โœ… | โœ… | โœ… | | Device | CUDA | CPU | MPS | | ------------------ | :---------: | :-------: | :-------: | | PyTorch | v1.12 | v2.3+ | v1.12 | | ONNX | โœ… | โœ… | - | | TensorRT | โœ… | - | - | | OpenVINO | - | ๐Ÿงช | โ” |
## Task These are simple examples. For more customization details, please refer to [Notebooks](examples) and lower-level modifications **[HOWTO](docs/HOWTO.md)**. ## Training To train YOLO on your dataset: 1. Modify the configuration file `data/config.yaml` to point to your dataset. 2. Run the training script: ```shell python yolo/lazy.py dataset=dev use_wandb=True python yolo/lazy.py task.data.batch_size=8 model=v9-c # or more args ``` ### Transfer Learning To perform transfer learning with YOLOv9: ```shell python yolo/lazy.py task=train task.data.batch_size=8 model=v9-c dataset={dataset_config} device={cpu, mps, cuda} ``` ### Inference To evaluate the model performance, use: ```shell python yolo/lazy.py task=inference # if cloned from GitHub python yolo/lazy.py task=inference \ name=AnyNameYouWant \ # AnyNameYouWant device=cpu \ # hardware cuda, cpu, mps model=v9-s \ # model version: v9-c, m, s task.nms.min_confidence=0.1 \ # nms config task.fast_inference=onnx \ # onnx, trt, deploy task.data.source=data/toy/images/train \ # path to file, dir, webcam +quite=True \ # Quite Output yolo task=inference task.data.source={Any} # if pip installed ``` ### Validation To validate the model performance, use: ```shell python yolo/lazy.py task=validation # or python yolo/lazy.py task=validation dataset=toy ``` ## Contributing Contributions to the YOLOv9 project are welcome! See [CONTRIBUTING](docs/CONTRIBUTING.md) for guidelines on how to contribute. ## Star History [![Star History Chart](https://api.star-history.com/svg?repos=WongKinYiu/YOLO&type=Date)](https://star-history.com/#WongKinYiu/YOLO&Date) ## Citations ``` @misc{wang2024yolov9, title={YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information}, author={Chien-Yao Wang and I-Hau Yeh and Hong-Yuan Mark Liao}, year={2024}, eprint={2402.13616}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```