from typing import Optional, Tuple import torch from torch import Tensor, nn from torch.nn.common_types import _size_2_t from yolo.tools.module_helper import auto_pad, get_activation class Conv(nn.Module): """A basic convolutional block that includes convolution, batch normalization, and activation.""" def __init__( self, in_channels: int, out_channels: int, kernel_size: _size_2_t, *, activation: Optional[str] = "SiLU", **kwargs ): super().__init__() kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs)) self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, **kwargs) self.bn = nn.BatchNorm2d(out_channels) self.act = get_activation(activation) def forward(self, x: Tensor) -> Tensor: return self.act(self.bn(self.conv(x))) class Pool(nn.Module): """A generic pooling block supporting 'max' and 'avg' pooling methods.""" def __init__(self, method: str = "max", kernel_size: _size_2_t = 2, **kwargs): super().__init__() kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs)) pool_classes = {"max": nn.MaxPool2d, "avg": nn.AvgPool2d} self.pool = pool_classes[method.lower()](kernel_size=kernel_size, **kwargs) def forward(self, x: Tensor) -> Tensor: return self.pool(x) class ADown(nn.Module): """Downsampling module combining average and max pooling with convolution for feature reduction.""" def __init__(self, in_channels: int, out_channels: int): super().__init__() half_in_channels = in_channels // 2 half_out_channels = out_channels // 2 mid_layer = {"kernel_size": 3, "stride": 2} self.avg_pool = Pool("avg", kernel_size=2, stride=1) self.conv1 = Conv(half_in_channels, half_out_channels, **mid_layer) self.max_pool = Pool("max", **mid_layer) self.conv2 = Conv(half_in_channels, half_out_channels, kernel_size=1) def forward(self, x: Tensor) -> Tensor: x = self.avg_pool(x) x1, x2 = x.chunk(2, dim=1) x1 = self.conv1(x1) x2 = self.max_pool(x2) x2 = self.conv2(x2) return torch.cat((x1, x2), dim=1) class CBLinear(nn.Module): """Convolutional block that outputs multiple feature maps split along the channel dimension.""" def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 1, **kwargs): super(CBLinear, self).__init__() kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs)) self.conv = nn.Conv2d(in_channels, sum(out_channels), kernel_size, **kwargs) self.out_channels = out_channels def forward(self, x: Tensor) -> Tuple[Tensor]: x = self.conv(x) return x.split(self.out_channels, dim=1) class SPPELAN(nn.Module): """SPPELAN module comprising multiple pooling and convolution layers.""" def __init__(self, in_channels, out_channels, neck_channels=Optional[int]): super(SPPELAN, self).__init__() neck_channels = neck_channels or out_channels // 2 self.conv1 = Conv(in_channels, neck_channels, kernel_size=1) self.pools = nn.ModuleList([Pool("max", 5, stride=1) for _ in range(3)]) self.conv5 = Conv(4 * neck_channels, out_channels, kernel_size=1) def forward(self, x: Tensor) -> Tensor: features = [self.conv1(x)] for pool in self.pools: features.append(pool(features[-1])) return self.conv5(torch.cat(features, dim=1)) #### -- #### # RepVGG class RepConv(nn.Module): # https://github.com/DingXiaoH/RepVGG def __init__( self, in_channels, out_channels, kernel_size=3, padding=None, stride=1, groups=1, act=nn.SiLU(), deploy=False ): super().__init__() self.deploy = deploy self.conv1 = Conv(in_channels, out_channels, kernel_size, stride=stride, groups=groups, activation=False) self.conv2 = Conv(in_channels, out_channels, 1, stride=stride, groups=groups, activation=False) self.act = act if isinstance(act, nn.Module) else nn.Identity() def forward(self, x): return self.act(self.conv1(x) + self.conv2(x)) def forward_fuse(self, x): return self.act(self.conv(x)) # to be implement # def fuse_convs(self): def fuse_conv_bn(self, conv, bn): std = (bn.running_var + bn.eps).sqrt() bias = bn.bias - bn.running_mean * bn.weight / std t = (bn.weight / std).reshape(-1, 1, 1, 1) weights = conv.weight * t bn = nn.Identity() conv = nn.Conv2d( in_channels=conv.in_channels, out_channels=conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, dilation=conv.dilation, groups=conv.groups, bias=True, padding_mode=conv.padding_mode, ) conv.weight = torch.nn.Parameter(weights) conv.bias = torch.nn.Parameter(bias) return conv # ResNet class Res(nn.Module): # ResNet bottleneck def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.25): super().__init__() h_channels = int(in_channels * ratio) self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act) self.cv2 = Conv(h_channels, h_channels, 3, 1, groups=groups, act=act) self.cv3 = Conv(h_channels, out_channels, 1, 1, act=act) def forward(self, x): return x + self.cv3(self.cv2(self.cv1(x))) class RepRes(nn.Module): # RepResNet bottleneck def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.25): super().__init__() h_channels = int(in_channels * ratio) self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act) self.cv2 = RepConv(h_channels, h_channels, 3, 1, groups=groups, act=act) self.cv3 = Conv(h_channels, out_channels, 1, 1, act=act) def forward(self, x): return x + self.cv3(self.cv2(self.cv1(x))) class ConvBlock(nn.Module): # ConvBlock def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0): super().__init__() h_channels = int(in_channels * ratio) self.cv1 = ( Conv(in_channels, in_channels, 3, 1, act=act) if repeat == 1 else Conv(in_channels, h_channels, 3, 1, act=act) ) self.cb = ( nn.Sequential(*(Conv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2))) if repeat > 2 else nn.Identity() ) self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act) def forward(self, x): return self.cv2(self.cb(self.cv1(x))) class RepConvBlock(nn.Module): # ConvBlock def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0): super().__init__() h_channels = int(in_channels * ratio) self.cv1 = ( Conv(in_channels, in_channels, 3, 1, act=act) if repeat == 1 else RepConv(in_channels, h_channels, 3, 1, act=act) ) self.cb = ( nn.Sequential(*(RepConv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2))) if repeat > 2 else nn.Identity() ) self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act) def forward(self, x): return self.cv2(self.cb(self.cv1(x))) class ResConvBlock(nn.Module): # ResConvBlock def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0): super().__init__() h_channels = int(in_channels * ratio) self.cv1 = ( Conv(in_channels, in_channels, 3, 1, act=act) if repeat == 1 else Conv(in_channels, h_channels, 3, 1, act=act) ) self.cb = ( nn.Sequential(*(Conv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2))) if repeat > 2 else nn.Identity() ) self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act) def forward(self, x): return x + self.cv2(self.cb(self.cv1(x))) class ResRepConvBlock(nn.Module): # ResConvBlock def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0): super().__init__() h_channels = int(in_channels * ratio) self.cv1 = ( Conv(in_channels, in_channels, 3, 1, act=act) if repeat == 1 else RepConv(in_channels, h_channels, 3, 1, act=act) ) self.cb = ( nn.Sequential(*(RepConv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2))) if repeat > 2 else nn.Identity() ) self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act) def forward(self, x): return x + self.cv2(self.cb(self.cv1(x))) # Darknet class Dark(nn.Module): # DarkNet bottleneck def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.5): super().__init__() h_channels = int(in_channels * ratio) self.cv1 = Conv(in_channels, h_channels, 1, 1, act=act) self.cv2 = Conv(h_channels, out_channels, 3, 1, groups=groups, act=act) def forward(self, x): return x + self.cv2(self.cv1(x)) class RepDark(nn.Module): # RepDarkNet bottleneck def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.5): super().__init__() h_channels = int(in_channels * ratio) self.cv1 = RepConv(in_channels, h_channels, 3, 1, groups=groups, act=act) self.cv2 = Conv(h_channels, out_channels, 1, 1, act=act) def forward(self, x): return x + self.cv2(self.cv1(x)) # CSPNet class CSP(nn.Module): # CSPNet def __init__(self, in_channels, out_channels, repeat=1, cb_repeat=2, act=nn.ReLU()): super().__init__() h_channels = in_channels // 2 self.cv1 = Conv(in_channels, in_channels, 1, 1, act=act) self.cb = nn.Sequential(*(ResConvBlock(h_channels, act=act, repeat=cb_repeat) for _ in range(repeat))) self.cv2 = Conv(2 * h_channels, out_channels, 1, 1, act=act) def forward(self, x): x = list(self.cv1(x).chunk(2, 1)) x = torch.cat((self.cb(x[0]), x[1]), 1) x = self.cv2(x) return x class CSPDark(nn.Module): # CSPNet def __init__(self, in_channels, out_channels, repeat=1, groups=1, act=nn.ReLU(), ratio=1.0): super().__init__() h_channels = in_channels // 2 self.cv1 = Conv(in_channels, in_channels, 1, 1, act=act) self.cb = nn.Sequential( *(Dark(h_channels, h_channels, groups=groups, act=act, ratio=ratio) for _ in range(repeat)) ) self.cv2 = Conv(2 * h_channels, out_channels, 1, 1, act=act) def forward(self, x): y = list(self.cv1(x).chunk(2, 1)) return self.cv2(torch.cat((self.cb(y[0]), y[1]), 1)) # ELAN class ELAN(nn.Module): # ELAN def __init__(self, in_channels, out_channels, med_channels, elan_repeat=2, cb_repeat=2, ratio=1.0): super().__init__() h_channels = med_channels // 2 self.cv1 = Conv(in_channels, med_channels, 1, 1) self.cb = nn.ModuleList(ConvBlock(h_channels, repeat=cb_repeat, ratio=ratio) for _ in range(elan_repeat)) self.cv2 = Conv((2 + elan_repeat) * h_channels, out_channels, 1, 1) def forward(self, x): y = list(self.cv1(x).chunk(2, 1)) y.extend((m(y[-1])) for m in self.cb) return self.cv2(torch.cat(y, 1)) class CSPELAN(nn.Module): # ELAN def __init__(self, in_channels, out_channels, med_channels, elan_repeat=2, cb_repeat=2, ratio=1.0): super().__init__() h_channels = med_channels // 2 self.cv1 = Conv(in_channels, med_channels, 1, 1) self.cb = nn.ModuleList(CSP(h_channels, h_channels, repeat=cb_repeat, ratio=ratio) for _ in range(elan_repeat)) self.cv2 = Conv((2 + elan_repeat) * h_channels, out_channels, 1, 1) def forward(self, x): y = list(self.cv1(x).chunk(2, 1)) y.extend((m(y[-1])) for m in self.cb) return self.cv2(torch.cat(y, 1)) class Concat(nn.Module): def __init__(self, dim=1): super(Concat, self).__init__() self.dim = dim def forward(self, x): return torch.cat(x, self.dim) # TODO: check if Mit class SPPCSPConv(nn.Module): # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks def __init__(self, in_channels, out_channels, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)): super(SPPCSPConv, self).__init__() c_ = int(2 * out_channels * e) # hidden channels self.cv1 = Conv(in_channels, c_, 1) self.cv2 = Conv(in_channels, c_, 1) self.cv3 = Conv(c_, c_, 3) self.cv4 = Conv(c_, c_, 1) self.m = nn.ModuleList([Pool(method="max", kernel_size=x, stride=1, padding=x // 2) for x in k]) self.cv5 = Conv(4 * c_, c_, 1) self.cv6 = Conv(c_, c_, 3) self.cv7 = Conv(2 * c_, out_channels, 1) def forward(self, x): x1 = self.cv4(self.cv3(self.cv1(x))) y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1))) y2 = self.cv2(x) return self.cv7(torch.cat((y1, y2), dim=1)) class ImplicitA(nn.Module): """ Implement YOLOR - implicit knowledge(Add), paper: https://arxiv.org/abs/2105.04206 """ def __init__(self, channel: int, mean: float = 0.0, std: float = 0.02): super().__init__() self.channel = channel self.mean = mean self.std = std self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1)) nn.init.normal_(self.implicit, mean=mean, std=self.std) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.implicit + x class ImplicitM(nn.Module): """ Implement YOLOR - implicit knowledge(multiply), paper: https://arxiv.org/abs/2105.04206 """ def __init__(self, channel: int, mean: float = 1.0, std: float = 0.02): super().__init__() self.channel = channel self.mean = mean self.std = std self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1)) nn.init.normal_(self.implicit, mean=self.mean, std=self.std) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.implicit * x class UpSample(nn.Module): def __init__(self, **kwargs): super().__init__() self.UpSample = nn.Upsample(**kwargs) def forward(self, x): return self.UpSample(x) class IDetect(nn.Module): """ #TODO: Add Detect class, change IDetect base class """ stride = None # strides computed during build export = False # onnx export end2end = False include_nms = False concat = False def __init__(self, nc=80, anchors=(), ch=()): # detection layer super(IDetect, self).__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.zeros(1)] * self.nl # init grid a = torch.tensor(anchors).float().view(self.nl, -1, 2) self.register_buffer("anchors", a) # shape(nl,na,2) self.register_buffer("anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv self.ia = nn.ModuleList(ImplicitA(x) for x in ch) self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch) def forward(self, x): # x = x.copy() # for profiling z = [] # inference output self.training |= self.export for i in range(self.nl): x[i] = self.m[i](self.ia[i](x[i])) # conv x[i] = self.im[i](x[i]) bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.grid[i].shape[2:4] != x[i].shape[2:4]: self.grid[i] = self._make_grid(nx, ny).to(x[i].device) y = x[i].sigmoid() y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i]) * self.stride[i] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh z.append(y.view(bs, -1, self.no)) return x if self.training else (torch.cat(z, 1), x)