import sys from pathlib import Path import hydra import torch project_root = Path(__file__).resolve().parent.parent sys.path.append(str(project_root)) from yolo.config.config import Config from yolo.model.yolo import create_model from yolo.tools.data_loader import create_dataloader from yolo.tools.solver import ModelTester, ModelTrainer from yolo.utils.bounding_box_utils import Vec2Box from yolo.utils.deploy_utils import FastModelLoader from yolo.utils.logging_utils import ProgressLogger @hydra.main(config_path="config", config_name="config", version_base=None) def main(cfg: Config): progress = ProgressLogger(cfg, exp_name=cfg.name) dataloader = create_dataloader(cfg.task.data, cfg.dataset, cfg.task.task) device = torch.device(cfg.device) if getattr(cfg.task, "fast_inference", False): model = FastModelLoader(cfg, device).load_model() device = torch.device(cfg.device) else: model = create_model(cfg.model, class_num=cfg.class_num, weight_path=cfg.weight, device=device) vec2box = Vec2Box(model, cfg.image_size, device) if cfg.task.task == "train": trainer = ModelTrainer(cfg, model, vec2box, progress, device) trainer.solve(dataloader) if cfg.task.task == "inference": tester = ModelTester(cfg, model, vec2box, progress, device) tester.solve(dataloader) if __name__ == "__main__": main()