File size: 2,345 Bytes
98333ca e2f65f6 98333ca e2f65f6 98333ca e2f65f6 fbc6758 e2f65f6 fbc6758 e2f65f6 fbc6758 e2f65f6 fbc6758 e2f65f6 fbc6758 e2f65f6 fbc6758 e2f65f6 fbc6758 e2f65f6 fbc6758 e2f65f6 fbc6758 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import gradio as gr
import transformers
import librosa
import torch
# Load the Shuka model pipeline.
pipe = transformers.pipeline(
model="sarvamai/shuka_v1",
trust_remote_code=True,
device=0 if torch.cuda.is_available() else -1,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else None
)
def process_audio(audio):
"""
Processes the input audio and returns a text response generated by the Shuka model.
"""
if audio is None:
return "No audio provided. Please upload or record an audio file."
try:
# Gradio returns a tuple: (sample_rate, numpy_array)
sample_rate, audio_data = audio
except Exception as e:
return f"Error processing audio input: {e}"
if audio_data is None or len(audio_data) == 0:
return "Audio data is empty. Please try again with a valid audio file."
# Resample to 16000 Hz if necessary
if sample_rate != 16000:
try:
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
sample_rate = 16000
except Exception as e:
return f"Error during resampling: {e}"
# Define conversation turns for the model
turns = [
{'role': 'system', 'content': 'Respond naturally and informatively.'},
{'role': 'user', 'content': '<|audio|>'}
]
try:
result = pipe({'audio': audio_data, 'turns': turns, 'sampling_rate': sample_rate}, max_new_tokens=512)
except Exception as e:
return f"Error during model processing: {e}"
# Extract generated text
if isinstance(result, list) and len(result) > 0:
response = result[0].get('generated_text', '')
else:
response = str(result)
return response
# Create the Gradio interface.
# If you wish to record audio directly, you may need to upgrade Gradio to a version that supports "source" for the Audio component.
iface = gr.Interface(
fn=process_audio,
inputs=gr.Audio(type="numpy"), # using file upload input for audio
outputs="text",
title="Sarvam AI Shuka Voice Demo",
description="Upload an audio file and get a response using Sarvam AI's Shuka model."
)
if __name__ == "__main__":
# If port 7860 is in use, you can specify another port (here we use 7861)
iface.launch(server_port=7861)
|