File size: 21,196 Bytes
3b609b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import re
import warnings
from dataclasses import asdict, replace
from enum import Enum
from typing import Optional
import torch
from torch import nn
from transformers.pytorch_utils import Conv1D
from peft.import_utils import is_bnb_4bit_available, is_bnb_available
from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists
from peft.utils import (
TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING,
TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING,
ModulesToSaveWrapper,
_freeze_adapter,
_get_submodules,
)
from .layer import Conv2d, Conv3d, IA3Layer, Linear
class IA3Model(BaseTuner):
"""
Creates a Infused Adapter by Inhibiting and Amplifying Inner Activations ((IA)^3) model from a pretrained
transformers model. The method is described in detail in https://arxiv.org/abs/2205.05638
Args:
model ([`~transformers.PreTrainedModel`]): The model to be adapted.
config ([`IA3Config`]): The configuration of the (IA)^3 model.
adapter_name (`str`): The name of the adapter, defaults to `"default"`.
low_cpu_mem_usage (`bool`, `optional`, defaults to `False`):
Create empty adapter weights on meta device. Useful to speed up the loading process.
Returns:
`torch.nn.Module`: The (IA)^3 model.
Example:
```py
>>> from transformers import AutoModelForSeq2SeqLM, ia3Config
>>> from peft import IA3Model, IA3Config
>>> config = IA3Config(
... peft_type="IA3",
... task_type="SEQ_2_SEQ_LM",
... target_modules=["k", "v", "w0"],
... feedforward_modules=["w0"],
... )
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
>>> ia3_model = IA3Model(config, model)
```
**Attributes**:
- **model** ([`~transformers.PreTrainedModel`]) -- The model to be adapted.
- **peft_config** ([`ia3Config`]): The configuration of the (IA)^3 model.
"""
prefix: str = "ia3_"
def __init__(self, model, config, adapter_name, low_cpu_mem_usage: bool = False):
super().__init__(model, config, adapter_name, low_cpu_mem_usage=low_cpu_mem_usage)
@staticmethod
def _create_new_module(ia3_config, adapter_name, target, **kwargs):
# avoid eager bnb import
if is_bnb_available():
import bitsandbytes as bnb
from .bnb import Linear8bitLt
if is_bnb_4bit_available():
from .bnb import Linear4bit
loaded_in_8bit = kwargs.pop("loaded_in_8bit", False)
loaded_in_4bit = kwargs.pop("loaded_in_4bit", False)
is_feedforward = kwargs.pop("is_feedforward", False)
if isinstance(target, BaseTunerLayer):
target_base_layer = target.get_base_layer()
else:
target_base_layer = target
if loaded_in_8bit and isinstance(target_base_layer, bnb.nn.Linear8bitLt):
eightbit_kwargs = kwargs.copy()
eightbit_kwargs.update(
{
"has_fp16_weights": target_base_layer.state.has_fp16_weights,
"threshold": target_base_layer.state.threshold,
"index": target_base_layer.index,
}
)
new_module = Linear8bitLt(target, adapter_name, is_feedforward=is_feedforward, **eightbit_kwargs)
elif loaded_in_4bit and isinstance(target_base_layer, bnb.nn.Linear4bit):
fourbit_kwargs = kwargs.copy()
fourbit_kwargs.update(
{
"compute_dtype": target_base_layer.compute_dtype,
"compress_statistics": target_base_layer.weight.compress_statistics,
"quant_type": target_base_layer.weight.quant_type,
}
)
new_module = Linear4bit(target, adapter_name, is_feedforward=is_feedforward, **fourbit_kwargs)
elif isinstance(target, torch.nn.Conv2d):
new_module = Conv2d(target, adapter_name, is_feedforward=is_feedforward, **kwargs)
elif isinstance(target, torch.nn.Conv3d):
new_module = Conv3d(target, adapter_name, is_feedforward=is_feedforward, **kwargs)
elif isinstance(target_base_layer, torch.nn.Linear):
if kwargs["fan_in_fan_out"]:
warnings.warn(
"fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. "
"Setting fan_in_fan_out to False."
)
kwargs["fan_in_fan_out"] = ia3_config.fan_in_fan_out = False
new_module = Linear(target, adapter_name, is_feedforward=is_feedforward, **kwargs)
elif isinstance(target_base_layer, Conv1D):
if not kwargs["fan_in_fan_out"]:
warnings.warn(
"fan_in_fan_out is set to False but the target module is `Conv1D`. "
"Setting fan_in_fan_out to True."
)
kwargs["fan_in_fan_out"] = ia3_config.fan_in_fan_out = True
new_module = Linear(
target, adapter_name, is_feedforward=is_feedforward, is_target_conv_1d_layer=True, **kwargs
)
else:
raise ValueError(
f"Target module {target} is not supported. "
f"Currently, only `torch.nn.Linear`, `torch.nn.Conv2d`, and `Conv1D` are supported."
)
return new_module
@staticmethod
def _check_target_module_exists(ia3_config, key):
return check_target_module_exists(ia3_config, key)
def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None:
for n, p in model.named_parameters():
if self.prefix not in n:
p.requires_grad = False
def _create_and_replace(
self,
ia3_config,
adapter_name,
target,
target_name,
parent,
current_key,
):
# check if target module is in feedforward_modules
is_feedforward = self._check_target_module_feedforward(ia3_config, current_key)
kwargs = {
"fan_in_fan_out": ia3_config.fan_in_fan_out,
"init_ia3_weights": ia3_config.init_ia3_weights,
"is_feedforward": is_feedforward,
"loaded_in_8bit": getattr(self.model, "is_loaded_in_8bit", False),
"loaded_in_4bit": getattr(self.model, "is_loaded_in_4bit", False),
}
if isinstance(target, IA3Layer):
target.update_layer(
adapter_name,
ia3_config.init_ia3_weights,
)
else:
new_module = self._create_new_module(ia3_config, adapter_name, target, **kwargs)
if adapter_name not in self.active_adapters:
# adding an additional adapter: it is not automatically trainable
new_module.requires_grad_(False)
self._replace_module(parent, target_name, new_module, target)
@staticmethod
def _check_target_module_feedforward(ia3_config, key) -> bool:
"""
A helper private method that checks if the target module `key` matches with a feedforward module specified in
`ia3_config`
"""
if isinstance(ia3_config.feedforward_modules, str):
is_feedforward = bool(re.fullmatch(ia3_config.feedforward_modules, key))
else:
is_feedforward = any(key.endswith(target_key) for target_key in ia3_config.feedforward_modules)
return is_feedforward
def _replace_module(self, parent, child_name, new_module, child):
setattr(parent, child_name, new_module)
# child layer wraps the original module, unpack it
if hasattr(child, "base_layer"):
child = child.base_layer
# layers with base_layer don't need the weight to be copied, as they have a reference already
if not hasattr(new_module, "base_layer"):
new_module.weight = child.weight
if hasattr(child, "bias"):
new_module.bias = child.bias
if getattr(child, "state", None) is not None:
if hasattr(new_module, "base_layer"):
new_module.base_layer.state = child.state
else:
new_module.state = child.state
new_module.to(child.weight.device)
meta = torch.device("meta")
# dispatch to correct device
for name, module in new_module.named_modules():
if self.prefix in name:
if not any(p.device == meta for p in module.parameters()):
module.to(child.weight.device)
def __getattr__(self, name: str):
"""Forward missing attributes to the wrapped module."""
try:
return super().__getattr__(name) # defer to nn.Module's logic
except AttributeError:
if name == "model": # see #1892: prevent infinite recursion if class is not initialized
raise
return getattr(self.model, name)
def get_peft_config_as_dict(self, inference: bool = False):
config_dict = {}
for key, value in self.peft_config.items():
config = {k: v.value if isinstance(v, Enum) else v for k, v in asdict(value).items()}
if inference:
config["inference_mode"] = True
config_dict[key] = config
return config
def _set_adapter_layers(self, enabled=True):
for module in self.model.modules():
if isinstance(module, (IA3Layer, ModulesToSaveWrapper)):
module.enable_adapters(enabled)
def enable_adapter_layers(self) -> None:
"""Enable all adapters.
Call this if you have previously disabled all adapters and want to re-enable them.
"""
self._set_adapter_layers(enabled=True)
def disable_adapter_layers(self) -> None:
"""Disable all adapters.
When disabling all adapters, the model output corresponds to the output of the base model.
"""
self._set_adapter_layers(enabled=False)
def set_adapter(self, adapter_name: str | list[str]) -> None:
"""Set the active adapter(s).
Additionally, this function will set the specified adapters to trainable (i.e., requires_grad=True). If this is
not desired, use the following code.
```py
>>> for name, param in model_peft.named_parameters():
... if ...: # some check on name (ex. if 'lora' in name)
... param.requires_grad = False
```
Args:
adapter_name (`str` or `list[str]`): Name of the adapter(s) to be activated.
"""
for module in self.model.modules():
if isinstance(module, IA3Layer):
if module.merged:
warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.")
module.unmerge()
module.set_adapter(adapter_name)
self.active_adapter = adapter_name
@staticmethod
def _prepare_adapter_config(peft_config, model_config):
if peft_config.target_modules is None:
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING:
raise ValueError("Please specify `target_modules` in `peft_config`")
peft_config.target_modules = set(
TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING[model_config["model_type"]]
)
if peft_config.feedforward_modules is None:
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING:
raise ValueError("Please specify `feedforward_modules` in `peft_config`")
peft_config.feedforward_modules = set(
TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING[model_config["model_type"]]
)
return peft_config
def _unload_and_optionally_merge(
self, merge: bool = True, safe_merge: bool = False, adapter_names: Optional[list[str]] = None
):
r"""
This method merges the (IA)^3 layers into the base model. This is needed if someone wants to use the base model
as a standalone model.
Args:
safe_merge (`bool`, `optional`, defaults to `False`):
If True, the merge operation will be performed in a copy of the original weights and check for NaNs
before merging the weights. This is useful if you want to check if the merge operation will produce
NaNs. Defaults to `False`.
adapter_names (`List[str]`, *optional*):
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
to `None`.
"""
if getattr(self.model, "is_loaded_in_8bit", False):
raise ValueError("Cannot merge ia3 layers when the model is loaded in 8-bit mode")
if getattr(self.model, "is_loaded_in_4bit", False):
raise ValueError("Cannot merge ia3 layers when the model is loaded in 4-bit mode")
self._unloading_checks(adapter_names)
key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key]
for key in key_list:
try:
parent, target, target_name = _get_submodules(self.model, key)
except AttributeError:
continue
if hasattr(target, "base_layer"):
if merge:
target.merge(safe_merge=safe_merge, adapter_names=adapter_names)
self._replace_module(parent, target_name, target.get_base_layer(), target)
elif isinstance(target, ModulesToSaveWrapper):
# save any additional trainable modules part of `modules_to_save`
new_module = target.modules_to_save[target.active_adapter]
if hasattr(new_module, "base_layer"):
# check if the module is itself a tuner layer
if merge:
new_module.merge(safe_merge=safe_merge, adapter_names=adapter_names)
new_module = new_module.get_base_layer()
setattr(parent, target_name, new_module)
return self.model
def merge_and_unload(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> torch.nn.Module:
r"""
This method merges the IA³ layers into the base model. This is needed if someone wants to use the base model as
a standalone model.
Args:
safe_merge (`bool`):
whether to activate the safe merging check to check if there is any potential Nan in the adapter
weights
adapter_names (`List[str]`, *optional*):
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
to `None`.
Example:
```py
>>> from transformers import AutoModelForCausalLM
>>> from peft import PeftModel
>>> base_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-40b")
>>> peft_model_id = "smangrul/falcon-40B-int4-peft-lora-sfttrainer-sample"
>>> model = PeftModel.from_pretrained(base_model, peft_model_id)
>>> merged_model = model.merge_and_unload()
```
"""
return self._unload_and_optionally_merge(safe_merge=safe_merge, adapter_names=adapter_names)
def unload(self) -> torch.nn.Module:
"""
Gets back the base model by removing all the IA³ modules without merging. This gives back the original base
model.
"""
return self._unload_and_optionally_merge(merge=False)
def delete_adapter(self, adapter_name: str) -> None:
"""
Deletes an existing adapter.
Args:
adapter_name (str): Name of the adapter to be deleted.
"""
if adapter_name not in self.peft_config:
raise ValueError(f"Adapter {adapter_name} does not exist")
del self.peft_config[adapter_name]
key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key]
new_adapter = None
for key in key_list:
_, target, _ = _get_submodules(self.model, key)
if isinstance(target, IA3Layer):
target.delete_adapter(adapter_name)
if new_adapter is None:
new_adapter = target.active_adapters[:]
self.active_adapter = new_adapter or []
def _check_add_weighted_adapter(self, adapters: list[str]) -> tuple[str, str]:
"""
Helper function to check if the arguments to add_weighted_adapter are valid and compatible with the underlying
model.
"""
# Validate existence of adapters
for adapter in adapters:
if adapter not in self.peft_config:
raise ValueError(f"Adapter {adapter} does not exist")
# Check for conflicting modules_to_save
modules_to_save_wrappers = [module for module in self.modules() if isinstance(module, ModulesToSaveWrapper)]
if any(
sum(adapter in wrapper.modules_to_save for adapter in adapters) > 1 for wrapper in modules_to_save_wrappers
):
raise ValueError("Cannot add weighted adapters targeting the same module with modules_to_save.")
# Ensure all adapters have compatible target and feedforward module types
target_module_types = {type(self.peft_config[adapter].target_modules) for adapter in adapters}
feedforward_module_types = {type(self.peft_config[adapter].feedforward_modules) for adapter in adapters}
if len(target_module_types) > 1 or len(feedforward_module_types) > 1:
raise ValueError("All adapter configs should have the same type for target and feedforward modules.")
# Combine target and feedforward modules
if str in target_module_types:
new_target_modules = "|".join(f"({self.peft_config[adapter].target_modules})" for adapter in adapters)
else:
new_target_modules = set.union(*(self.peft_config[adapter].target_modules for adapter in adapters))
if str in feedforward_module_types:
new_feedforward_modules = "|".join(
f"({self.peft_config[adapter].feedforward_modules})" for adapter in adapters
)
else:
new_feedforward_modules = set.union(
*(self.peft_config[adapter].feedforward_modules for adapter in adapters)
)
return new_target_modules, new_feedforward_modules
def add_weighted_adapter(
self,
adapters: list[str],
weights: list[float],
adapter_name: str,
) -> None:
"""
This method adds a new adapter by merging the given adapters with the given weights.
Args:
adapters (`list`):
List of adapter names to be merged.
weights (`list`):
List of weights for each adapter.
adapter_name (`str`):
Name of the new adapter.
"""
if adapter_name in list(self.peft_config.keys()):
return
new_target_modules, new_feedforward_modules = self._check_add_weighted_adapter(
adapters=adapters,
)
self.peft_config[adapter_name] = replace(
self.peft_config[adapters[0]],
target_modules=new_target_modules,
feedforward_modules=new_feedforward_modules,
)
self.inject_adapter(self.model, adapter_name)
# Do we really need that?
_freeze_adapter(self.model, adapter_name)
key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key]
for key in key_list:
_, target, _ = _get_submodules(self.model, key)
if isinstance(target, IA3Layer):
if adapter_name in target.ia3_l:
target_ia3_l = target.ia3_l[adapter_name]
else:
continue
target_ia3_l.data = target_ia3_l.data.zero_()
for adapter, weight in zip(adapters, weights):
if adapter in target.ia3_l:
current_adapter_ia3_l = target.ia3_l[adapter]
else:
continue
target_ia3_l.data += current_adapter_ia3_l.data * weight
|