File size: 4,977 Bytes
15fdcff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aa9da6
15fdcff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os
import gradio as gr
import pandas as pd
from dockling_parser import DocumentParser
from dockling_parser.exceptions import ParserError
import tempfile

TITLE = "πŸ“„ Smart Document Parser"
DESCRIPTION = """
A powerful document parsing application that automatically extracts structured information from various document formats.
Upload any document (PDF, DOCX, TXT, HTML, Markdown) and get structured information extracted automatically.
"""

ARTICLE = """
## πŸš€ Features

- Multiple Format Support: PDF, DOCX, TXT, HTML, and Markdown
- Rich Information Extraction
- Smart Processing with Confidence Scoring
- Automatic Format Detection

Made with ❀️ using Docling and Gradio
"""

# Initialize the document parser
parser = DocumentParser()

def process_document(file):
    """Process uploaded document and return structured information"""
    try:
        # Create a temporary file to handle the upload
        with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.name)[1]) as tmp_file:
            tmp_file.write(file.read())
            temp_path = tmp_file.name
        
        # Parse the document
        result = parser.parse(temp_path)
        
        # Clean up temporary file
        os.unlink(temp_path)
        
        # Prepare the outputs
        metadata_df = pd.DataFrame([{
            "Property": k,
            "Value": str(v)
        } for k, v in result.metadata.dict().items()])
        
        # Extract structured content
        sections = result.structured_content.get('sections', [])
        sections_text = "\n\n".join([f"Section {i+1}:\n{section}" for i, section in enumerate(sections)])
        
        # Format entities if available
        entities = result.structured_content.get('entities', {})
        entities_text = "\n".join([f"{entity_type}: {', '.join(entities_list)}" 
                                 for entity_type, entities_list in entities.items()]) if entities else "No entities detected"
        
        return (
            result.content,  # Main content
            metadata_df,     # Metadata as table
            sections_text,   # Structured sections
            entities_text,   # Named entities
            f"Confidence Score: {result.confidence_score:.2f}"  # Confidence score
        )
        
    except ParserError as e:
        return (
            f"Error parsing document: {str(e)}",
            pd.DataFrame(),
            "No sections available",
            "No entities available",
            "Confidence Score: 0.0"
        )
    except Exception as e:
        return (
            f"Unexpected error: {str(e)}",
            pd.DataFrame(),
            "No sections available",
            "No entities available",
            "Confidence Score: 0.0"
        )
    finally:
        # Ensure temporary file is cleaned up
        if 'temp_path' in locals() and os.path.exists(temp_path):
            try:
                os.unlink(temp_path)
            except:
                pass

# Create Gradio interface
with gr.Blocks(title=TITLE, theme=gr.themes.Soft()) as iface:
    gr.Markdown(f"# {TITLE}")
    gr.Markdown(DESCRIPTION)
    
    with gr.Row():
        with gr.Column():
            file_input = gr.File(
                label="Upload Document",
                file_types=[".pdf", ".docx", ".txt", ".html", ".md"],
                type="binary"
            )
            submit_btn = gr.Button("Process Document", variant="primary")
        
        with gr.Column():
            confidence = gr.Textbox(label="Processing Confidence")
    
    with gr.Tabs():
        with gr.TabItem("πŸ“ Content"):
            content_output = gr.Textbox(
                label="Extracted Content",
                lines=10,
                max_lines=30
            )
            
        with gr.TabItem("πŸ“Š Metadata"):
            metadata_output = gr.Dataframe(
                label="Document Metadata",
                headers=["Property", "Value"]
            )
            
        with gr.TabItem("πŸ“‘ Sections"):
            sections_output = gr.Textbox(
                label="Document Sections",
                lines=10,
                max_lines=30
            )
            
        with gr.TabItem("🏷️ Entities"):
            entities_output = gr.Textbox(
                label="Named Entities",
                lines=5,
                max_lines=15
            )
    
    # Handle file submission
    submit_btn.click(
        fn=process_document,
        inputs=[file_input],
        outputs=[
            content_output,
            metadata_output,
            sections_output,
            entities_output,
            confidence
        ]
    )
    
    gr.Markdown("""
    ### πŸ“Œ Supported Formats
    - PDF Documents (*.pdf)
    - Word Documents (*.docx)
    - Text Files (*.txt)
    - HTML Files (*.html)
    - Markdown Files (*.md)
    """)
    
    gr.Markdown(ARTICLE)

# Launch the app
if __name__ == "__main__":
    iface.launch()