File size: 7,896 Bytes
d760fbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import openai
from openai.error import OpenAIError
from tenacity import retry, stop_after_attempt, wait_random_exponential
import tiktoken
import traceback
import streamlit as st
import pandas as pd
from collections import defaultdict


def generate_prompt(system_prompt, separator, context, question):
    user_prompt = ""

    if system_prompt:
        user_prompt += system_prompt + separator
    if context:
        user_prompt += context + separator
    if question:
        user_prompt += question + separator
    
    return user_prompt

def generate_chat_prompt(separator, context, question):
    user_prompt = ""

    if context:
        user_prompt += context + separator
    if question:
        user_prompt += question + separator
    
    return user_prompt

@retry(wait=wait_random_exponential(min=3, max=90), stop=stop_after_attempt(6))
def get_embeddings(text, embedding_model="text-embedding-ada-002"):
    response = openai.Embedding.create(
                model=embedding_model,
                input=text,
            )
    embedding_vectors = response["data"][0]["embedding"]
    return embedding_vectors

@retry(wait=wait_random_exponential(min=3, max=90), stop=stop_after_attempt(6))
def get_completion(config, user_prompt):
    try:
        response = openai.Completion.create(
                    model=config["model_name"],
                    prompt=user_prompt,
                    temperature=config["temperature"],
                    max_tokens=config["max_tokens"],
                    top_p=config["top_p"],
                    frequency_penalty=config["frequency_penalty"],
                    presence_penalty=config["presence_penalty"],
                )
        
        answer = response["choices"][0]["text"]
        answer = answer.strip()
        return answer
    
    except OpenAIError as e:
        func_name = traceback.extract_stack()[-1].name
        st.error(f"Error in {func_name}:\n{type(e).__name__}=> {str(e)}")

@retry(wait=wait_random_exponential(min=3, max=90), stop=stop_after_attempt(6))
def get_chat_completion(config, system_prompt, question):
    try:
        messages = [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": question},
        ]

        response = openai.ChatCompletion.create(
                    model=config["model_name"],
                    messages=messages,
                    temperature=config["temperature"],
                    max_tokens=config["max_tokens"],
                    top_p=config["top_p"],
                    frequency_penalty=config["frequency_penalty"],
                    presence_penalty=config["presence_penalty"],
                )

        answer = response["choices"][0]["message"]["content"]
        answer = answer.strip()
        return answer
    
    except OpenAIError as e:
        func_name = traceback.extract_stack()[-1].name
        st.error(f"Error in {func_name}:\n{type(e).__name__}=> {str(e)}")


def context_chunking(context, threshold=512, chunk_overlap_limit=0):
    encoding = tiktoken.encoding_for_model("text-embedding-ada-002")
    contexts_lst = []
    while len(encoding.encode(context)) > threshold:
        context_temp = encoding.decode(encoding.encode(context)[:threshold])
        contexts_lst.append(context_temp)
        context = encoding.decode(encoding.encode(context)[threshold - chunk_overlap_limit:])
    
    if context:
        contexts_lst.append(context)
    
    return contexts_lst


def generate_csv_report(file, cols, criteria_dict, counter, config):
    try:
        df = pd.read_csv(file)

        if not "Questions" in df.columns or not "Contexts" in df.columns:
            raise ValueError("Missing Column Names in .csv file: `Questions` and `Contexts`")

        final_df = pd.DataFrame(columns=cols)
        hyperparameters = f"Temperature: {config['temperature']}\nTop P: {config['top_p']} \

        \nMax Tokens: {config['max_tokens']}\nFrequency Penalty: {config['frequency_penalty']} \

        \nPresence Penalty: {config['presence_penalty']}"
        
        progress_text = "Generation in progress. Please wait..."
        my_bar = st.progress(0, text=progress_text)

        for idx, row in df.iterrows():
            my_bar.progress((idx + 1)/len(df), text=progress_text)

            question = row["Questions"]
            context = row["Contexts"]
            contexts_lst = context_chunking(context)

            system_prompts_list = []
            answers_list = []
            for num in range(counter):
                system_prompt_final = "system_prompt_" + str(num+1)
                system_prompts_list.append(eval(system_prompt_final))
                
                if config["model_name"] in ["text-davinci-003", "gpt-3.5-turbo-instruct"]:
                    user_prompt = generate_prompt(eval(system_prompt_final), config["separator"], context, question)
                    exec(f"{answer_final} = get_completion(config, user_prompt)")

                else:
                    user_prompt = generate_chat_prompt(config["separator"], context, question)
                    exec(f"{answer_final} = get_chat_completion(config, eval(system_prompt_final), user_prompt)")

                answers_list.append(eval(answer_final))
            
            from metrics import Metrics
            metrics = Metrics(question, [context]*counter, answers_list, config)
            rouge1, rouge2, rougeL = metrics.rouge_score()
            rouge_scores = f"Rouge1: {rouge1}, Rouge2: {rouge2}, RougeL: {rougeL}"

            metrics = Metrics(question, [contexts_lst]*counter, answers_list, config)
            bleu = metrics.bleu_score()
            bleu_scores = f"BLEU Score: {bleu}"
            
            metrics = Metrics(question, [context]*counter, answers_list, config)
            bert_f1 = metrics.bert_score()
            bert_scores = f"BERT F1 Score: {bert_f1}"

            answer_relevancy_scores = []
            critique_scores = defaultdict(list)
            faithfulness_scores = []
            for num in range(counter):
                answer_final = "answer_" + str(num+1)
                metrics = Metrics(question, context, eval(answer_final), config, strictness=3)

                answer_relevancy_score = metrics.answer_relevancy()
                answer_relevancy_scores.append(f"Answer #{str(num+1)}: {answer_relevancy_score}")
                
                for criteria_name, criteria_desc in criteria_dict.items():
                    critique_score = metrics.critique(criteria_desc, strictness=3)
                    critique_scores[criteria_name].append(f"Answer #{str(num+1)}: {critique_score}")

                faithfulness_score = metrics.faithfulness(strictness=3)
                faithfulness_scores.append(f"Answer #{str(num+1)}: {faithfulness_score}")
            
            answer_relevancy_scores = ";\n".join(answer_relevancy_scores)
            faithfulness_scores = ";\n".join(faithfulness_scores)
            
            critique_scores_lst = []
            for criteria_name in criteria_dict.keys():
                score = ";\n".join(critique_scores[criteria_name])
                critique_scores_lst.append(score)


            final_df.loc[len(final_df)] = [question, context, config['model_name'], hyperparameters] + \
            system_prompts_list + answers_list + [rouge_scores, bleu_scores, bert_scores, \
            answer_relevancy_score, faithfulness_score] + critique_scores_lst
        
        my_bar.empty()
        return final_df
        
    except Exception as e:
        func_name = traceback.extract_stack()[-1].name
        st.error(f"Error in {func_name}: {str(e)}, {traceback.format_exc()}")