""" Here we make various wrapper classes for the FluxPipeline from diffusers to add the concept attention functionality. We opt for a wrapper functionality """ import torch import numpy as np from typing import List, Union, Optional, Dict, Any, Callable import PIL.Image import einops import matplotlib.pyplot as plt from diffusers import DiffusionPipeline from diffusers.image_processor import PipelineImageInput from diffusers.pipelines.flux.pipeline_flux import retrieve_timesteps, calculate_shift from diffusers.utils import is_torch_xla_available, BaseOutput, logging, USE_PEFT_BACKEND, \ scale_lora_layers, unscale_lora_layers from diffusers.utils.torch_utils import randn_tensor from diffusers.image_processor import PipelineImageInput, VaeImageProcessor from diffusers.loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin from diffusers.models.autoencoders import AutoencoderKL from diffusers.models.transformers import FluxTransformer2DModel from diffusers.schedulers import FlowMatchEulerDiscreteScheduler from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection, T5EncoderModel, T5TokenizerFast, ) if is_torch_xla_available(): import torch_xla.core.xla_model as xm XLA_AVAILABLE = True else: XLA_AVAILABLE = False logger = logging.get_logger(__name__) # pylint: disable=invalid-name class FluxConceptAttentionOutput(BaseOutput): """ Output class for the FluxPipeline with concept attention functionality. Args: images (`List[PIL.Image.Image]` or `np.ndarray`) The generated images. concept_attention_maps (`List[PIL.Image.Image]` or `np.ndarray`) The concept attention maps. """ images: Union[List[PIL.Image.Image], np.ndarray] concept_attention_maps: Union[List[PIL.Image.Image], np.ndarray] class FluxWithConceptAttentionPipeline( DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin, FluxIPAdapterMixin, ): r""" The Flux pipeline for text-to-image generation with added Concept Attention. Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ Args: transformer ([`FluxTransformer2DModel`]): Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. scheduler ([`FlowMatchEulerDiscreteScheduler`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. text_encoder_2 ([`T5EncoderModel`]): [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). tokenizer_2 (`T5TokenizerFast`): Second Tokenizer of class [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). """ model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->transformer->vae" _optional_components = ["image_encoder", "feature_extractor"] _callback_tensor_inputs = ["latents", "prompt_embeds"] def __init__( self, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, text_encoder_2: T5EncoderModel, tokenizer_2: T5TokenizerFast, transformer: FluxTransformer2DModel, image_encoder: CLIPVisionModelWithProjection = None, feature_extractor: CLIPImageProcessor = None, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, transformer=transformer, scheduler=scheduler, image_encoder=image_encoder, feature_extractor=feature_extractor, ) self.vae_scale_factor = ( 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 ) # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible # by the patch size. So the vae scale factor is multiplied by the patch size to account for this self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) self.tokenizer_max_length = ( self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 ) self.default_sample_size = 128 def _get_t5_prompt_embeds( self, prompt: Union[str, List[str]] = None, num_images_per_prompt: int = 1, max_sequence_length: int = 512, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): device = device or self._execution_device dtype = dtype or self.text_encoder.dtype prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2) text_inputs = self.tokenizer_2( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, return_length=False, return_overflowing_tokens=False, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because `max_sequence_length` is set to " f" {max_sequence_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] dtype = self.text_encoder_2.dtype prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) _, seq_len, _ = prompt_embeds.shape # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) return prompt_embeds def _get_clip_prompt_embeds( self, prompt: Union[str, List[str]], num_images_per_prompt: int = 1, device: Optional[torch.device] = None, ): device = device or self._execution_device prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer_max_length, truncation=True, return_overflowing_tokens=False, return_length=False, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer_max_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) # Use pooled output of CLIPTextModel prompt_embeds = prompt_embeds.pooler_output prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) return prompt_embeds def encode_prompt( self, prompt: Union[str, List[str]], prompt_2: Union[str, List[str]], device: Optional[torch.device] = None, num_images_per_prompt: int = 1, prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, max_sequence_length: int = 512, lora_scale: Optional[float] = None, ): r""" Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is used in all text-encoders device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. lora_scale (`float`, *optional*): A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. """ device = device or self._execution_device # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if self.text_encoder is not None and USE_PEFT_BACKEND: scale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None and USE_PEFT_BACKEND: scale_lora_layers(self.text_encoder_2, lora_scale) prompt = [prompt] if isinstance(prompt, str) else prompt if prompt_embeds is None: prompt_2 = prompt_2 or prompt prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 # We only use the pooled prompt output from the CLIPTextModel pooled_prompt_embeds = self._get_clip_prompt_embeds( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, ) prompt_embeds = self._get_t5_prompt_embeds( prompt=prompt_2, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device, ) if self.text_encoder is not None: if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None: if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder_2, lora_scale) dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) return prompt_embeds, pooled_prompt_embeds, text_ids def encode_concepts(self, concepts: List[str], device: Optional[torch.device] = None): """ Encodes our concept vectors using the T5 Encoder. """ """ # Utils for concept encoding def embed_concepts( clip, t5, concepts: list[str], batch_size=1 ): # Code pulled from concept_attention.flux/sampling.py: prepare() # Embed each concept separately concept_embeddings = [] for concept in concepts: concept_embedding = t5(concept) # Pull out the first token token_embedding = concept_embedding[0, 0, :] # First token of first prompt concept_embeddings.append(token_embedding) concept_embeddings = torch.stack(concept_embeddings).unsqueeze(0) # Add filler tokens of zeros concept_ids = torch.zeros(batch_size, concept_embeddings.shape[1], 3) # Embed the concepts to a clip vector prompt = " ".join(concepts) vec = clip(prompt) vec = torch.zeros_like(vec).to(vec.device) return concept_embeddings, concept_ids, vec """ concept_embeds = self._get_t5_prompt_embeds( prompt=concepts, num_images_per_prompt=1, max_sequence_length=64, device=device, ) # Pull out the first token of each embedded concept to get the concept embeddings concept_embeds = concept_embeds[:, 0, :] concept_embeds = concept_embeds.unsqueeze(0) # Make the CLIP vector for the concepts clip_vec = self._get_clip_prompt_embeds( prompt=" ".join(concepts), num_images_per_prompt=1, device=device, ) # # Set the vec to zero # clip_vec = torch.zeros_like(clip_vec).to(clip_vec.device) # # Add filler tokens of zeros concept_ids = torch.zeros(concept_embeds.shape[1], 3).to(device=device, dtype=concept_embeds.dtype) return concept_embeds, clip_vec, concept_ids def encode_image(self, image, device, num_images_per_prompt): dtype = next(self.image_encoder.parameters()).dtype if not isinstance(image, torch.Tensor): image = self.feature_extractor(image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=dtype) image_embeds = self.image_encoder(image).image_embeds image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) return image_embeds def prepare_ip_adapter_image_embeds( self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt ): image_embeds = [] if ip_adapter_image_embeds is None: if not isinstance(ip_adapter_image, list): ip_adapter_image = [ip_adapter_image] if len(ip_adapter_image) != len(self.transformer.encoder_hid_proj.image_projection_layers): raise ValueError( f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.transformer.encoder_hid_proj.image_projection_layers)} IP Adapters." ) for single_ip_adapter_image, image_proj_layer in zip( ip_adapter_image, self.transformer.encoder_hid_proj.image_projection_layers ): single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1) image_embeds.append(single_image_embeds[None, :]) else: for single_image_embeds in ip_adapter_image_embeds: image_embeds.append(single_image_embeds) ip_adapter_image_embeds = [] for i, single_image_embeds in enumerate(image_embeds): single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) single_image_embeds = single_image_embeds.to(device=device) ip_adapter_image_embeds.append(single_image_embeds) return ip_adapter_image_embeds def check_inputs( self, prompt, prompt_2, height, width, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, max_sequence_length=None, ): if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0: logger.warning( f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly" ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt_2 is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) elif negative_prompt_2 is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_embeds is not None and pooled_prompt_embeds is None: raise ValueError( "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." ) if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: raise ValueError( "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." ) if max_sequence_length is not None and max_sequence_length > 512: raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") @staticmethod def _prepare_latent_image_ids(batch_size, height, width, device, dtype): latent_image_ids = torch.zeros(height, width, 3) latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None] latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :] latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape latent_image_ids = latent_image_ids.reshape( latent_image_id_height * latent_image_id_width, latent_image_id_channels ) return latent_image_ids.to(device=device, dtype=dtype) @staticmethod def _pack_latents(latents, batch_size, num_channels_latents, height, width): latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) latents = latents.permute(0, 2, 4, 1, 3, 5) latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) return latents @staticmethod def _unpack_latents(latents, height, width, vae_scale_factor): batch_size, num_patches, channels = latents.shape # VAE applies 8x compression on images but we must also account for packing which requires # latent height and width to be divisible by 2. height = 2 * (int(height) // (vae_scale_factor * 2)) width = 2 * (int(width) // (vae_scale_factor * 2)) latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2) latents = latents.permute(0, 3, 1, 4, 2, 5) latents = latents.reshape(batch_size, channels // (2 * 2), height, width) return latents def enable_vae_slicing(self): r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.vae.enable_slicing() def disable_vae_slicing(self): r""" Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_slicing() def enable_vae_tiling(self): r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. """ self.vae.enable_tiling() def disable_vae_tiling(self): r""" Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_tiling() def prepare_latents( self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, ): # VAE applies 8x compression on images but we must also account for packing which requires # latent height and width to be divisible by 2. height = 2 * (int(height) // (self.vae_scale_factor * 2)) width = 2 * (int(width) // (self.vae_scale_factor * 2)) shape = (batch_size, num_channels_latents, height, width) if latents is not None: latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) return latents.to(device=device, dtype=dtype), latent_image_ids if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype) return latents, latent_image_ids @property def guidance_scale(self): return self._guidance_scale @property def joint_attention_kwargs(self): return self._joint_attention_kwargs @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, negative_prompt: Union[str, List[str]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None, true_cfg_scale: float = 1.0, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 28, sigmas: Optional[List[float]] = None, guidance_scale: float = 3.5, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, negative_ip_adapter_image: Optional[PipelineImageInput] = None, negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, joint_attention_kwargs: Optional[Dict[str, Any]] = None, concept_attention_kwargs: Optional[Dict[str, Any]] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 512, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is will be used instead. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is not greater than `1`). negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders. true_cfg_scale (`float`, *optional*, defaults to 1.0): When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance. height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. This is set to 1024 by default for the best results. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. This is set to 1024 by default for the best results. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. guidance_scale (`float`, *optional*, defaults to 7.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not provided, embeddings are computed from the `ip_adapter_image` input argument. negative_ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not provided, embeddings are computed from the `ip_adapter_image` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. Examples: Returns: [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ # Verify the concept kwargs inputs if concept_attention_kwargs is not None: assert "concepts" in concept_attention_kwargs, "Concepts must be passed in the concept_attention_kwargs" assert isinstance(concept_attention_kwargs["concepts"], list), "Concepts must be a list of strings" assert len(concept_attention_kwargs["concepts"]) > 0, "Concepts must not be an empty list" assert "timesteps" in concept_attention_kwargs, "Timesteps must be passed in the concept_attention_kwargs" assert isinstance(concept_attention_kwargs["timesteps"], list), "Timesteps must be a list of integers" assert len(concept_attention_kwargs["timesteps"]) > 0, "Timesteps must not be an empty list" assert "layers" in concept_attention_kwargs, "Layers must be passed in the concept_attention_kwargs" assert isinstance(concept_attention_kwargs["layers"], list), "Layers must be a list of integers" assert len(concept_attention_kwargs["layers"]) > 0, "Layers must not be an empty list" height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, prompt_2, height, width, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length, ) self._guidance_scale = guidance_scale self._joint_attention_kwargs = joint_attention_kwargs self._current_timestep = None self._interrupt = False # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device lora_scale = ( self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None ) has_neg_prompt = negative_prompt is not None or ( negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None ) do_true_cfg = true_cfg_scale > 1 and has_neg_prompt ( prompt_embeds, pooled_prompt_embeds, text_ids, ) = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, device=device, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, lora_scale=lora_scale, ) if do_true_cfg: ( negative_prompt_embeds, negative_pooled_prompt_embeds, _, ) = self.encode_prompt( prompt=negative_prompt, prompt_2=negative_prompt_2, prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=negative_pooled_prompt_embeds, device=device, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, lora_scale=lora_scale, ) # Embed concepts concept_embeddings, pooled_concept_embeds, concept_ids = self.encode_concepts( concept_attention_kwargs["concepts"], device=device ) # Add the concept embeddings to the concept_attention_kwargs # if concept_attention_kwargs is not None: # concept_attention_kwargs["concept_embeddings"] = concept_embeddings # concept_attention_kwargs["concept_vec"] = concept_vec # 4. Prepare latent variables num_channels_latents = self.transformer.config.in_channels // 4 latents, latent_image_ids = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 5. Prepare timesteps sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas image_seq_len = latents.shape[1] mu = calculate_shift( image_seq_len, self.scheduler.config.get("base_image_seq_len", 256), self.scheduler.config.get("max_image_seq_len", 4096), self.scheduler.config.get("base_shift", 0.5), self.scheduler.config.get("max_shift", 1.16), ) timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, sigmas=sigmas, mu=mu, ) num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) self._num_timesteps = len(timesteps) # handle guidance if self.transformer.config.guidance_embeds: guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) guidance = guidance.expand(latents.shape[0]) else: guidance = None if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and ( negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None ): negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and ( negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None ): ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) if self.joint_attention_kwargs is None: self._joint_attention_kwargs = {} image_embeds = None negative_image_embeds = None if ip_adapter_image is not None or ip_adapter_image_embeds is not None: image_embeds = self.prepare_ip_adapter_image_embeds( ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, ) if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None: negative_image_embeds = self.prepare_ip_adapter_image_embeds( negative_ip_adapter_image, negative_ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, ) # Make concept attention maps all_concept_attention_maps = [] # 6. Denoising loop with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue self._current_timestep = t if image_embeds is not None: self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latents.shape[0]).to(latents.dtype) # Don't do concept attention if the timestep is not in the concept_attention_kwargs if concept_attention_kwargs is not None and not i in concept_attention_kwargs["timesteps"]: current_concept_embeddings = None else: current_concept_embeddings = concept_embeddings transformer_output = self.transformer( hidden_states=latents, timestep=timestep / 1000, guidance=guidance, pooled_projections=pooled_prompt_embeds, pooled_concept_embeds=pooled_concept_embeds, encoder_hidden_states=prompt_embeds, concept_hidden_states=current_concept_embeddings, txt_ids=text_ids, img_ids=latent_image_ids, concept_ids=concept_ids, joint_attention_kwargs=self.joint_attention_kwargs, concept_attention_kwargs=concept_attention_kwargs, return_dict=False, ) noise_pred, concept_attention_maps = transformer_output if i in concept_attention_kwargs["timesteps"]: all_concept_attention_maps.append(concept_attention_maps) if do_true_cfg: if negative_image_embeds is not None: self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds neg_noise_pred = self.transformer( hidden_states=latents, timestep=timestep / 1000, guidance=guidance, pooled_projections=negative_pooled_prompt_embeds, encoder_hidden_states=negative_prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False, )[0] noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred) # compute the previous noisy sample x_t -> x_t-1 latents_dtype = latents.dtype latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] if latents.dtype != latents_dtype: if torch.backends.mps.is_available(): # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 latents = latents.to(latents_dtype) if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step() self._current_timestep = None if output_type == "latent": image = latents else: latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor image = self.vae.decode(latents, return_dict=False)[0] image = image.detach() image = self.image_processor.postprocess(image, output_type=output_type) ################### Process the concept attention maps ################### concept_attention_maps = torch.stack(all_concept_attention_maps).to(torch.float32) # Apply a softmax over the concept dimension concept_attention_maps = torch.softmax(concept_attention_maps, dim=-1) concept_attention_maps = concept_attention_maps.detach().cpu().numpy() # Average over time and layers concept_attention_maps = einops.reduce( concept_attention_maps, "time layers batch concepts patches -> batch concepts patches", reduction="mean" ) # Reshape to image size concept_attention_maps = einops.rearrange( concept_attention_maps, "batch concepts (h w) -> batch concepts h w", h=height // 16, w=width // 16 ) if not output_type == "latent": concept_attention_maps = (concept_attention_maps - concept_attention_maps.min()) / (concept_attention_maps.max() - concept_attention_maps.min()) # Convert to cmap convert_to_plasma = lambda x: np.uint8(plt.get_cmap("plasma")(x)[:, :, :3] * 255) concept_attention_maps = [ [ PIL.Image.fromarray( convert_to_plasma(concept_attention_map) ) for concept_attention_map in concept_attention_maps[batch_index] ] for batch_index in range(concept_attention_maps.shape[0]) ] ########################################################################### # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image, concept_attention_maps) return FluxConceptAttentionOutput( images=image, concept_attention_maps=concept_attention_maps, )