Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import numpy as np | |
from typing import Any, Dict, Optional, Tuple, Union | |
from torch import nn | |
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel | |
from diffusers.models.transformers.transformer_flux import FluxSingleTransformerBlock | |
from diffusers.models.normalization import AdaLayerNormContinuous | |
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers, BaseOutput | |
from diffusers.utils.import_utils import is_torch_npu_available | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed | |
from concept_attention.diffusers.flux.flux_dit_block_with_concept_attention import FluxTransformerBlockWithConceptAttention | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class FluxTransformer2DOutputWithConceptAttention(BaseOutput): | |
sample: torch.Tensor | |
concept_attention_maps: torch.Tensor | |
class FluxTransformer2DModelWithConceptAttention(FluxTransformer2DModel): | |
""" | |
The Transformer model introduced in Flux with Concept Attention. | |
""" | |
def __init__( | |
self, | |
patch_size: int = 1, | |
in_channels: int = 64, | |
out_channels: Optional[int] = None, | |
num_layers: int = 19, | |
num_single_layers: int = 38, | |
attention_head_dim: int = 128, | |
num_attention_heads: int = 24, | |
joint_attention_dim: int = 4096, | |
pooled_projection_dim: int = 768, | |
guidance_embeds: bool = False, | |
axes_dims_rope: Tuple[int] = (16, 56, 56), | |
): | |
super().__init__() | |
self.out_channels = out_channels or in_channels | |
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim | |
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope) | |
text_time_guidance_cls = ( | |
CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings | |
) | |
self.time_text_embed = text_time_guidance_cls( | |
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim | |
) | |
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim) | |
self.x_embedder = nn.Linear(self.config.in_channels, self.inner_dim) | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
FluxTransformerBlockWithConceptAttention( | |
dim=self.inner_dim, | |
num_attention_heads=self.config.num_attention_heads, | |
attention_head_dim=self.config.attention_head_dim, | |
) | |
for i in range(self.config.num_layers) | |
] | |
) | |
self.single_transformer_blocks = nn.ModuleList( | |
[ | |
FluxSingleTransformerBlock( | |
dim=self.inner_dim, | |
num_attention_heads=self.config.num_attention_heads, | |
attention_head_dim=self.config.attention_head_dim, | |
) | |
for i in range(self.config.num_single_layers) | |
] | |
) | |
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) | |
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor = None, | |
concept_hidden_states: torch.Tensor = None, | |
pooled_projections: torch.Tensor = None, | |
pooled_concept_embeds: torch.Tensor = None, | |
timestep: torch.LongTensor = None, | |
img_ids: torch.Tensor = None, | |
txt_ids: torch.Tensor = None, | |
concept_ids: torch.Tensor = None, | |
guidance: torch.Tensor = None, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
concept_attention_kwargs: Optional[Dict[str, Any]] = None, | |
controlnet_block_samples=None, | |
controlnet_single_block_samples=None, | |
return_dict: bool = True, | |
controlnet_blocks_repeat: bool = False, | |
) -> Union[torch.Tensor, FluxTransformer2DOutputWithConceptAttention]: | |
""" | |
The [`FluxTransformer2DModel`] forward method. | |
Args: | |
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`): | |
Input `hidden_states`. | |
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`): | |
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. | |
pooled_projections (`torch.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected | |
from the embeddings of input conditions. | |
timestep ( `torch.LongTensor`): | |
Used to indicate denoising step. | |
block_controlnet_hidden_states: (`list` of `torch.Tensor`): | |
A list of tensors that if specified are added to the residuals of transformer blocks. | |
joint_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
concept_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary with parameters for Concept Attention. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain | |
tuple. | |
Returns: | |
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
`tuple` where the first element is the sample tensor. | |
""" | |
if joint_attention_kwargs is not None: | |
joint_attention_kwargs = joint_attention_kwargs.copy() | |
lora_scale = joint_attention_kwargs.pop("scale", 1.0) | |
else: | |
lora_scale = 1.0 | |
if USE_PEFT_BACKEND: | |
# weight the lora layers by setting `lora_scale` for each PEFT layer | |
scale_lora_layers(self, lora_scale) | |
else: | |
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: | |
logger.warning( | |
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." | |
) | |
hidden_states = self.x_embedder(hidden_states) | |
timestep = timestep.to(hidden_states.dtype) * 1000 | |
if guidance is not None: | |
guidance = guidance.to(hidden_states.dtype) * 1000 | |
else: | |
guidance = None | |
temb = ( | |
self.time_text_embed(timestep, pooled_projections) | |
if guidance is None | |
else self.time_text_embed(timestep, guidance, pooled_projections) | |
) | |
encoder_hidden_states = self.context_embedder(encoder_hidden_states) | |
if pooled_concept_embeds is not None: | |
if guidance is None: | |
concept_temb = self.time_text_embed(timestep, pooled_concept_embeds) | |
else: | |
concept_temb = self.time_text_embed(timestep, guidance, pooled_concept_embeds) | |
# Apply the context embedder to the concept_hidden_states | |
if concept_hidden_states is not None: | |
concept_hidden_states = self.context_embedder(concept_hidden_states) | |
if txt_ids.ndim == 3: | |
logger.warning( | |
"Passing `txt_ids` 3d torch.Tensor is deprecated." | |
"Please remove the batch dimension and pass it as a 2d torch Tensor" | |
) | |
txt_ids = txt_ids[0] | |
if img_ids.ndim == 3: | |
logger.warning( | |
"Passing `img_ids` 3d torch.Tensor is deprecated." | |
"Please remove the batch dimension and pass it as a 2d torch Tensor" | |
) | |
img_ids = img_ids[0] | |
ids = torch.cat((txt_ids, img_ids), dim=0) | |
image_rotary_emb = self.pos_embed(ids) | |
concept_image_ids = torch.cat((concept_ids, img_ids), dim=0) | |
concept_rotary_emb = self.pos_embed(concept_image_ids) | |
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs: | |
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds") | |
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds) | |
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states}) | |
all_concept_attention_maps = [] | |
for index_block, block in enumerate(self.transformer_blocks): | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func( | |
block, | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
image_rotary_emb, | |
) | |
else: | |
encoder_hidden_states, hidden_states, concept_hidden_states, concept_attention_maps = block( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
concept_hidden_states=concept_hidden_states, | |
temb=temb, | |
concept_temb=concept_temb, | |
image_rotary_emb=image_rotary_emb, | |
concept_rotary_emb=concept_rotary_emb, | |
joint_attention_kwargs=joint_attention_kwargs, | |
concept_attention_kwargs=concept_attention_kwargs, | |
) | |
if concept_attention_maps is not None and index_block in concept_attention_kwargs["layers"]: | |
all_concept_attention_maps.append(concept_attention_maps) | |
del concept_attention_maps | |
# controlnet residual | |
if controlnet_block_samples is not None: | |
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples) | |
interval_control = int(np.ceil(interval_control)) | |
# For Xlabs ControlNet. | |
if controlnet_blocks_repeat: | |
hidden_states = ( | |
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)] | |
) | |
else: | |
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control] | |
if concept_hidden_states is not None: | |
concept_hidden_states = concept_hidden_states.cpu() | |
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) | |
if len(all_concept_attention_maps) > 0: | |
all_concept_attention_maps = torch.stack(all_concept_attention_maps, dim=0) | |
else: | |
all_concept_attention_maps = None | |
for index_block, block in enumerate(self.single_transformer_blocks): | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
hidden_states = self._gradient_checkpointing_func( | |
block, | |
hidden_states, | |
temb, | |
image_rotary_emb, | |
) | |
else: | |
hidden_states = block( | |
hidden_states=hidden_states, | |
temb=temb, | |
image_rotary_emb=image_rotary_emb, | |
joint_attention_kwargs=joint_attention_kwargs, | |
) | |
# controlnet residual | |
if controlnet_single_block_samples is not None: | |
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples) | |
interval_control = int(np.ceil(interval_control)) | |
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = ( | |
hidden_states[:, encoder_hidden_states.shape[1] :, ...] | |
+ controlnet_single_block_samples[index_block // interval_control] | |
) | |
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] | |
hidden_states = self.norm_out(hidden_states, temb) | |
output = self.proj_out(hidden_states) | |
if USE_PEFT_BACKEND: | |
# remove `lora_scale` from each PEFT layer | |
unscale_lora_layers(self, lora_scale) | |
if not return_dict: | |
return (output, all_concept_attention_maps) | |
return FluxTransformer2DOutputWithConceptAttention(sample=output, concept_attention_maps=all_concept_attention_maps) | |