File size: 9,923 Bytes
55866f4
 
 
ade193e
3a5de53
 
48daf06
 
55866f4
 
 
5f5f2bb
ade193e
55866f4
3a5de53
 
 
 
 
 
 
 
 
fba6ac5
3a5de53
 
 
 
 
 
 
 
55866f4
 
3a5de53
d6a75b9
 
3a5de53
 
 
4f83196
55866f4
 
4f83196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55866f4
 
 
3a5de53
 
 
55866f4
3a5de53
 
 
55866f4
3a5de53
 
 
55866f4
 
 
d6a75b9
 
 
 
 
3a5de53
 
 
 
 
 
 
 
 
d6a75b9
 
 
 
3a5de53
 
 
 
 
 
 
 
d6a75b9
3a5de53
 
 
d6a75b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8468a7
d6a75b9
 
 
 
 
 
a8468a7
d6a75b9
 
 
 
 
 
 
 
 
 
3a5de53
 
 
55866f4
d6a75b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55866f4
 
48daf06
 
d6a75b9
 
 
5f8123c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import spaces
import gradio as gr
from PIL import Image
import math
import io
import base64
import subprocess
import os

from concept_attention import ConceptAttentionFluxPipeline

IMG_SIZE = 210
COLUMNS = 5

def update_default_concepts(prompt):
    default_concepts = {
        "A dog by a tree": ["dog", "grass", "tree", "background"],
        "A dragon": ["dragon", "sky", "rock", "cloud"],
        "A hot air balloon": ["balloon", "sky", "water", "tree"]
    }

    return gr.update(value=default_concepts.get(prompt, []))

pipeline = ConceptAttentionFluxPipeline(model_name="flux-schnell", device="cuda") # , offload_model=True)

def convert_pil_to_bytes(img):
    img = img.resize((IMG_SIZE, IMG_SIZE), resample=Image.NEAREST)
    buffered = io.BytesIO()
    img.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode()

    return img_str

@spaces.GPU(duration=60)
def process_inputs(prompt, concepts, seed, layer_start_index, timestep_start_index):
    if not prompt:
        raise gr.exceptions.InputError("prompt", "Please enter a prompt")

    if not prompt.strip():
        raise gr.exceptions.InputError("prompt", "Please enter a prompt")

    prompt = prompt.strip()

    if len(concepts) == 0:
        raise gr.exceptions.InputError("words", "Please enter at least 1 concept")
    
    if len(concepts) > 9:
        raise gr.exceptions.InputError("words", "Please enter at most 9 concepts")

    pipeline_output = pipeline.generate_image(
        prompt=prompt,
        concepts=concepts,
        width=1024,
        height=1024,
        seed=seed,
        timesteps=list(range(timestep_start_index, 4)),
        num_inference_steps=4,
        layer_indices=list(range(layer_start_index, 19)),
        softmax=True if len(concepts) > 1 else False
    )

    output_image = pipeline_output.image

    output_space_heatmaps = pipeline_output.concept_heatmaps
    output_space_heatmaps = [heatmap.resize((IMG_SIZE, IMG_SIZE), resample=Image.NEAREST) for heatmap in output_space_heatmaps]
    output_space_maps_and_labels = [(output_space_heatmaps[concept_index], concepts[concept_index]) for concept_index in range(len(concepts))]

    cross_attention_heatmaps = pipeline_output.cross_attention_maps
    cross_attention_heatmaps = [heatmap.resize((IMG_SIZE, IMG_SIZE), resample=Image.NEAREST) for heatmap in cross_attention_heatmaps]
    cross_attention_maps_and_labels = [(cross_attention_heatmaps[concept_index], concepts[concept_index]) for concept_index in range(len(concepts))]

    return output_image, \
        gr.update(value=output_space_maps_and_labels, columns=len(output_space_maps_and_labels)), \
        gr.update(value=cross_attention_maps_and_labels, columns=len(cross_attention_maps_and_labels))

with gr.Blocks(
    css="""
        .container { 
            max-width: 1400px; 
            margin: 0 auto; 
            padding: 20px; 
        }
        .authors { text-align: center; margin-bottom: 10px; }
        .affiliations { text-align: center; color: #666; margin-bottom: 10px; }
        .abstract { text-align: center; margin-bottom: 40px; }
        .generated-image {
            display: flex;
            align-items: center;
            justify-content: center;
            height: 100%; /* Ensures full height */
        }
        .header {
            display: flex;
            flex-direction: column;
        }
        .input {
            height: 47px;
        }
        .input-column {
            flex-direction: column;
            gap: 0px;
        }
        .input-column-label {}
        .gallery {}
        .run-button-column {
            width: 100px !important;
        }
        #title {
            font-size: 2.4em;
            text-align: center;
            margin-bottom: 10px;
        }
        #subtitle {
            font-size: 2.0em;
            text-align: center;
        }

        #concept-attention-callout-svg {
            width: 250px;
        }

        /* Show only on screens wider than 768px (adjust as needed) */
        @media (min-width: 1024px) {
            .svg-container {
                min-width: 150px;
                width: 200px;
                padding-top: 540px;
            }
        }

        @media (min-width: 1280px) {
            .svg-container {
                min-width: 200px;
                width: 300px;
                padding-top: 420px;
            }
        }
         @media (min-width: 1530px) {
            .svg-container {
                min-width: 200px;
                width: 300px;
                padding-top: 400px;
            }
        }


        @media (max-width: 1024px) {
            .svg-container {
                display: none;
            }
        }

    """
    # ,
    # elem_classes="container"
) as demo:
    with gr.Row(elem_classes="container"):
        with gr.Column(elem_classes="application", scale=15):
            with gr.Row(scale=3, elem_classes="header"):
                gr.HTML("<h1 id='title'> ConceptAttention: Visualize Any Concepts in Your Generated Images</h1>")
                gr.HTML("<h2 id='subtitle'> Interpret generative models with precise, high-quality heatmaps. <br/> Check out our paper <a href='https://arxiv.org/abs/2502.04320'> here </a>. </h2>")

            with gr.Row(scale=1, equal_height=True):
                with gr.Column(scale=4, elem_classes="input-column", min_width=250):
                    gr.HTML(
                        "Write a Prompt",
                        elem_classes="input-column-label"
                    )
                    prompt = gr.Dropdown(
                        ["A dog by a tree", "A dragon", "A hot air balloon"], 
                        container=False,
                        allow_custom_value=True,
                        elem_classes="input"
                    )

                with gr.Column(scale=7, elem_classes="input-column"):
                    gr.HTML(
                        "Select or Write Concepts",
                        elem_classes="input-column-label"
                    )
                    concepts = gr.Dropdown(
                        ["dog", "grass", "tree", "dragon", "sky", "rock", "cloud", "balloon", "water", "background"], 
                        value=["dog", "grass", "tree", "background"], 
                        multiselect=True, 
                        label="Concepts",
                        container=False,
                        allow_custom_value=True,
                        # scale=4,
                        elem_classes="input",
                        max_choices=5
                    )

                with gr.Column(scale=1, min_width=100, elem_classes="input-column run-button-column"):
                    gr.HTML(
                        "&#8203;",
                        elem_classes="input-column-label"
                    )
                    submit_btn = gr.Button(
                        "Run",
                        elem_classes="input"
                    )

            with gr.Row(elem_classes="gallery", scale=8):

                with gr.Column(scale=1, min_width=250):
                    generated_image = gr.Image(
                        elem_classes="generated-image",
                        show_label=False
                    )
                    
                with gr.Column(scale=4):
                    concept_attention_gallery = gr.Gallery(
                        label="Concept Attention (Ours)", 
                        show_label=True, 
                        # columns=3, 
                        rows=1,
                        object_fit="contain", 
                        height="200px",
                        elem_classes="gallery",
                        elem_id="concept-attention-gallery"
                    )

                    cross_attention_gallery = gr.Gallery(
                        label="Cross Attention", 
                        show_label=True, 
                        # columns=3, 
                        rows=1,
                        object_fit="contain", 
                        height="200px",
                        elem_classes="gallery"
                    )

            with gr.Accordion("Advanced Settings", open=False):
                seed = gr.Slider(minimum=0, maximum=10000, step=1, label="Seed", value=42)
                layer_start_index = gr.Slider(minimum=0, maximum=18, step=1, label="Layer Start Index", value=10)
                timestep_start_index = gr.Slider(minimum=0, maximum=4, step=1, label="Timestep Start Index", value=2)

            submit_btn.click(
                fn=process_inputs, 
                inputs=[prompt, concepts, seed, layer_start_index, timestep_start_index], 
                outputs=[generated_image, concept_attention_gallery, cross_attention_gallery]
            )

            prompt.change(update_default_concepts, inputs=[prompt], outputs=[concepts])

            # Automatically process the first example on launch
            demo.load(
                process_inputs, 
                inputs=[prompt, concepts, seed, layer_start_index, timestep_start_index], 
                outputs=[generated_image, concept_attention_gallery, cross_attention_gallery]
            )

        with gr.Column(scale=4, min_width=250, elem_classes="svg-container"):
            concept_attention_callout_svg = gr.HTML(
                "<img src='/gradio_api/file=ConceptAttentionCallout.svg' id='concept-attention-callout-svg'/>",
                # container=False,
            )

if __name__ == "__main__":
    if os.path.exists("/data-nvme/zerogpu-offload"):
        subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
    demo.launch(
        allowed_paths=["."]
    )
    #     share=True,
    #     server_name="0.0.0.0",
    #     inbrowser=True,
    #     # share=False,
    #     server_port=6754,
    #     quiet=True,
    #     max_threads=1
    # )