Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,923 Bytes
55866f4 ade193e 3a5de53 48daf06 55866f4 5f5f2bb ade193e 55866f4 3a5de53 fba6ac5 3a5de53 55866f4 3a5de53 d6a75b9 3a5de53 4f83196 55866f4 4f83196 55866f4 3a5de53 55866f4 3a5de53 55866f4 3a5de53 55866f4 d6a75b9 3a5de53 d6a75b9 3a5de53 d6a75b9 3a5de53 d6a75b9 a8468a7 d6a75b9 a8468a7 d6a75b9 3a5de53 55866f4 d6a75b9 55866f4 48daf06 d6a75b9 5f8123c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import spaces
import gradio as gr
from PIL import Image
import math
import io
import base64
import subprocess
import os
from concept_attention import ConceptAttentionFluxPipeline
IMG_SIZE = 210
COLUMNS = 5
def update_default_concepts(prompt):
default_concepts = {
"A dog by a tree": ["dog", "grass", "tree", "background"],
"A dragon": ["dragon", "sky", "rock", "cloud"],
"A hot air balloon": ["balloon", "sky", "water", "tree"]
}
return gr.update(value=default_concepts.get(prompt, []))
pipeline = ConceptAttentionFluxPipeline(model_name="flux-schnell", device="cuda") # , offload_model=True)
def convert_pil_to_bytes(img):
img = img.resize((IMG_SIZE, IMG_SIZE), resample=Image.NEAREST)
buffered = io.BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return img_str
@spaces.GPU(duration=60)
def process_inputs(prompt, concepts, seed, layer_start_index, timestep_start_index):
if not prompt:
raise gr.exceptions.InputError("prompt", "Please enter a prompt")
if not prompt.strip():
raise gr.exceptions.InputError("prompt", "Please enter a prompt")
prompt = prompt.strip()
if len(concepts) == 0:
raise gr.exceptions.InputError("words", "Please enter at least 1 concept")
if len(concepts) > 9:
raise gr.exceptions.InputError("words", "Please enter at most 9 concepts")
pipeline_output = pipeline.generate_image(
prompt=prompt,
concepts=concepts,
width=1024,
height=1024,
seed=seed,
timesteps=list(range(timestep_start_index, 4)),
num_inference_steps=4,
layer_indices=list(range(layer_start_index, 19)),
softmax=True if len(concepts) > 1 else False
)
output_image = pipeline_output.image
output_space_heatmaps = pipeline_output.concept_heatmaps
output_space_heatmaps = [heatmap.resize((IMG_SIZE, IMG_SIZE), resample=Image.NEAREST) for heatmap in output_space_heatmaps]
output_space_maps_and_labels = [(output_space_heatmaps[concept_index], concepts[concept_index]) for concept_index in range(len(concepts))]
cross_attention_heatmaps = pipeline_output.cross_attention_maps
cross_attention_heatmaps = [heatmap.resize((IMG_SIZE, IMG_SIZE), resample=Image.NEAREST) for heatmap in cross_attention_heatmaps]
cross_attention_maps_and_labels = [(cross_attention_heatmaps[concept_index], concepts[concept_index]) for concept_index in range(len(concepts))]
return output_image, \
gr.update(value=output_space_maps_and_labels, columns=len(output_space_maps_and_labels)), \
gr.update(value=cross_attention_maps_and_labels, columns=len(cross_attention_maps_and_labels))
with gr.Blocks(
css="""
.container {
max-width: 1400px;
margin: 0 auto;
padding: 20px;
}
.authors { text-align: center; margin-bottom: 10px; }
.affiliations { text-align: center; color: #666; margin-bottom: 10px; }
.abstract { text-align: center; margin-bottom: 40px; }
.generated-image {
display: flex;
align-items: center;
justify-content: center;
height: 100%; /* Ensures full height */
}
.header {
display: flex;
flex-direction: column;
}
.input {
height: 47px;
}
.input-column {
flex-direction: column;
gap: 0px;
}
.input-column-label {}
.gallery {}
.run-button-column {
width: 100px !important;
}
#title {
font-size: 2.4em;
text-align: center;
margin-bottom: 10px;
}
#subtitle {
font-size: 2.0em;
text-align: center;
}
#concept-attention-callout-svg {
width: 250px;
}
/* Show only on screens wider than 768px (adjust as needed) */
@media (min-width: 1024px) {
.svg-container {
min-width: 150px;
width: 200px;
padding-top: 540px;
}
}
@media (min-width: 1280px) {
.svg-container {
min-width: 200px;
width: 300px;
padding-top: 420px;
}
}
@media (min-width: 1530px) {
.svg-container {
min-width: 200px;
width: 300px;
padding-top: 400px;
}
}
@media (max-width: 1024px) {
.svg-container {
display: none;
}
}
"""
# ,
# elem_classes="container"
) as demo:
with gr.Row(elem_classes="container"):
with gr.Column(elem_classes="application", scale=15):
with gr.Row(scale=3, elem_classes="header"):
gr.HTML("<h1 id='title'> ConceptAttention: Visualize Any Concepts in Your Generated Images</h1>")
gr.HTML("<h2 id='subtitle'> Interpret generative models with precise, high-quality heatmaps. <br/> Check out our paper <a href='https://arxiv.org/abs/2502.04320'> here </a>. </h2>")
with gr.Row(scale=1, equal_height=True):
with gr.Column(scale=4, elem_classes="input-column", min_width=250):
gr.HTML(
"Write a Prompt",
elem_classes="input-column-label"
)
prompt = gr.Dropdown(
["A dog by a tree", "A dragon", "A hot air balloon"],
container=False,
allow_custom_value=True,
elem_classes="input"
)
with gr.Column(scale=7, elem_classes="input-column"):
gr.HTML(
"Select or Write Concepts",
elem_classes="input-column-label"
)
concepts = gr.Dropdown(
["dog", "grass", "tree", "dragon", "sky", "rock", "cloud", "balloon", "water", "background"],
value=["dog", "grass", "tree", "background"],
multiselect=True,
label="Concepts",
container=False,
allow_custom_value=True,
# scale=4,
elem_classes="input",
max_choices=5
)
with gr.Column(scale=1, min_width=100, elem_classes="input-column run-button-column"):
gr.HTML(
"​",
elem_classes="input-column-label"
)
submit_btn = gr.Button(
"Run",
elem_classes="input"
)
with gr.Row(elem_classes="gallery", scale=8):
with gr.Column(scale=1, min_width=250):
generated_image = gr.Image(
elem_classes="generated-image",
show_label=False
)
with gr.Column(scale=4):
concept_attention_gallery = gr.Gallery(
label="Concept Attention (Ours)",
show_label=True,
# columns=3,
rows=1,
object_fit="contain",
height="200px",
elem_classes="gallery",
elem_id="concept-attention-gallery"
)
cross_attention_gallery = gr.Gallery(
label="Cross Attention",
show_label=True,
# columns=3,
rows=1,
object_fit="contain",
height="200px",
elem_classes="gallery"
)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(minimum=0, maximum=10000, step=1, label="Seed", value=42)
layer_start_index = gr.Slider(minimum=0, maximum=18, step=1, label="Layer Start Index", value=10)
timestep_start_index = gr.Slider(minimum=0, maximum=4, step=1, label="Timestep Start Index", value=2)
submit_btn.click(
fn=process_inputs,
inputs=[prompt, concepts, seed, layer_start_index, timestep_start_index],
outputs=[generated_image, concept_attention_gallery, cross_attention_gallery]
)
prompt.change(update_default_concepts, inputs=[prompt], outputs=[concepts])
# Automatically process the first example on launch
demo.load(
process_inputs,
inputs=[prompt, concepts, seed, layer_start_index, timestep_start_index],
outputs=[generated_image, concept_attention_gallery, cross_attention_gallery]
)
with gr.Column(scale=4, min_width=250, elem_classes="svg-container"):
concept_attention_callout_svg = gr.HTML(
"<img src='/gradio_api/file=ConceptAttentionCallout.svg' id='concept-attention-callout-svg'/>",
# container=False,
)
if __name__ == "__main__":
if os.path.exists("/data-nvme/zerogpu-offload"):
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
demo.launch(
allowed_paths=["."]
)
# share=True,
# server_name="0.0.0.0",
# inbrowser=True,
# # share=False,
# server_port=6754,
# quiet=True,
# max_threads=1
# )
|