File size: 8,934 Bytes
55866f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import time
import uuid

import torch
import gradio as gr
import numpy as np
from einops import rearrange
from PIL import Image, ExifTags
from transformers import pipeline

from concept_attention.flux.src.flux.cli import SamplingOptions
from concept_attention.flux.src.flux.sampling import denoise, get_noise, get_schedule, prepare, unpack
from concept_attention.flux.src.flux.util import configs, embed_watermark, load_ae, load_clip, load_flow_model, load_t5

NSFW_THRESHOLD = 0.85

def get_models(name: str, device: torch.device, offload: bool, is_schnell: bool):
    t5 = load_t5(device, max_length=256 if is_schnell else 512)
    clip = load_clip(device)
    model = load_flow_model(name, device="cpu" if offload else device)
    ae = load_ae(name, device="cpu" if offload else device)
    nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)
    return model, ae, t5, clip, nsfw_classifier

class FluxGenerator:
    def __init__(self, model_name: str, device: str, offload: bool):
        self.device = torch.device(device)
        self.offload = offload
        self.model_name = model_name
        self.is_schnell = model_name == "flux-schnell"
        self.model, self.ae, self.t5, self.clip, self.nsfw_classifier = get_models(
            model_name,
            device=self.device,
            offload=self.offload,
            is_schnell=self.is_schnell,
        )

    @torch.inference_mode()
    def generate_image(
        self,
        width,
        height,
        num_steps,
        guidance,
        seed,
        prompt,
        init_image=None,
        image2image_strength=0.0,
        add_sampling_metadata=True,
    ):
        seed = int(seed)
        if seed == -1:
            seed = None

        opts = SamplingOptions(
            prompt=prompt,
            width=width,
            height=height,
            num_steps=num_steps,
            guidance=guidance,
            seed=seed,
        )

        if opts.seed is None:
            opts.seed = torch.Generator(device="cpu").seed()
        print(f"Generating '{opts.prompt}' with seed {opts.seed}")
        t0 = time.perf_counter()

        if init_image is not None:
            if isinstance(init_image, np.ndarray):
                init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 255.0
                init_image = init_image.unsqueeze(0) 
            init_image = init_image.to(self.device)
            init_image = torch.nn.functional.interpolate(init_image, (opts.height, opts.width))
            if self.offload:
                self.ae.encoder.to(self.device)
            init_image = self.ae.encode(init_image.to())
            if self.offload:
                self.ae = self.ae.cpu()
                torch.cuda.empty_cache()

        # prepare input
        x = get_noise(
            1,
            opts.height,
            opts.width,
            device=self.device,
            dtype=torch.bfloat16,
            seed=opts.seed,
        )
        timesteps = get_schedule(
            opts.num_steps,
            x.shape[-1] * x.shape[-2] // 4,
            shift=(not self.is_schnell),
        )
        if init_image is not None:
            t_idx = int((1 - image2image_strength) * num_steps)
            t = timesteps[t_idx]
            timesteps = timesteps[t_idx:]
            x = t * x + (1.0 - t) * init_image.to(x.dtype)

        if self.offload:
            self.t5, self.clip = self.t5.to(self.device), self.clip.to(self.device)
        inp = prepare(t5=self.t5, clip=self.clip, img=x, prompt=opts.prompt)

        # offload TEs to CPU, load model to gpu
        if self.offload:
            self.t5, self.clip = self.t5.cpu(), self.clip.cpu()
            torch.cuda.empty_cache()
            self.model = self.model.to(self.device)

        # denoise initial noise
        x = denoise(self.model, **inp, timesteps=timesteps, guidance=opts.guidance)

        # offload model, load autoencoder to gpu
        if self.offload:
            self.model.cpu()
            torch.cuda.empty_cache()
            self.ae.decoder.to(x.device)

        # decode latents to pixel space
        x = unpack(x.float(), opts.height, opts.width)
        with torch.autocast(device_type=self.device.type, dtype=torch.bfloat16):
            x = self.ae.decode(x)

        if self.offload:
            self.ae.decoder.cpu()
            torch.cuda.empty_cache()

        t1 = time.perf_counter()

        print(f"Done in {t1 - t0:.1f}s.")
        # bring into PIL format
        x = x.clamp(-1, 1)
        x = embed_watermark(x.float())
        x = rearrange(x[0], "c h w -> h w c")

        img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
        nsfw_score = [x["score"] for x in self.nsfw_classifier(img) if x["label"] == "nsfw"][0]

        if nsfw_score < NSFW_THRESHOLD:
            filename = f"output/gradio/{uuid.uuid4()}.jpg"
            os.makedirs(os.path.dirname(filename), exist_ok=True)
            exif_data = Image.Exif()
            if init_image is None:
                exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux"
            else:
                exif_data[ExifTags.Base.Software] = "AI generated;img2img;flux"
            exif_data[ExifTags.Base.Make] = "Black Forest Labs"
            exif_data[ExifTags.Base.Model] = self.model_name
            if add_sampling_metadata:
                exif_data[ExifTags.Base.ImageDescription] = prompt
            
            img.save(filename, format="jpeg", exif=exif_data, quality=95, subsampling=0)

            return img, str(opts.seed), filename, None
        else:
            return None, str(opts.seed), None, "Your generated image may contain NSFW content."

def create_demo(model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu", offload: bool = False):
    generator = FluxGenerator(model_name, device, offload)
    is_schnell = model_name == "flux-schnell"

    with gr.Blocks() as demo:
        gr.Markdown(f"# Flux Image Generation Demo - Model: {model_name}")
        
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(label="Prompt", value="a photo of a forest with mist swirling around the tree trunks. The word \"FLUX\" is painted over it in big, red brush strokes with visible texture")
                do_img2img = gr.Checkbox(label="Image to Image", value=False, interactive=not is_schnell)
                init_image = gr.Image(label="Input Image", visible=False)
                image2image_strength = gr.Slider(0.0, 1.0, 0.8, step=0.1, label="Noising strength", visible=False)
                
                with gr.Accordion("Advanced Options", open=False):
                    width = gr.Slider(128, 8192, 1360, step=16, label="Width")
                    height = gr.Slider(128, 8192, 768, step=16, label="Height")
                    num_steps = gr.Slider(1, 50, 4 if is_schnell else 50, step=1, label="Number of steps")
                    guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Guidance", interactive=not is_schnell)
                    seed = gr.Textbox(-1, label="Seed (-1 for random)")
                    add_sampling_metadata = gr.Checkbox(label="Add sampling parameters to metadata?", value=True)
                
                generate_btn = gr.Button("Generate")
            
            with gr.Column():
                output_image = gr.Image(label="Generated Image")
                seed_output = gr.Number(label="Used Seed")
                warning_text = gr.Textbox(label="Warning", visible=False)
                download_btn = gr.File(label="Download full-resolution")

        def update_img2img(do_img2img):
            return {
                init_image: gr.update(visible=do_img2img),
                image2image_strength: gr.update(visible=do_img2img),
            }

        do_img2img.change(update_img2img, do_img2img, [init_image, image2image_strength])

        generate_btn.click(
            fn=generator.generate_image,
            inputs=[width, height, num_steps, guidance, seed, prompt, init_image, image2image_strength, add_sampling_metadata],
            outputs=[output_image, seed_output, download_btn, warning_text],
        )

    return demo

if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser(description="Flux")
    parser.add_argument("--name", type=str, default="flux-schnell", choices=list(configs.keys()), help="Model name")
    parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", help="Device to use")
    parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
    parser.add_argument("--share", action="store_true", help="Create a public link to your demo")
    args = parser.parse_args()

    demo = create_demo(args.name, args.device, args.offload)
    demo.launch(share=args.share)