[build-system] requires = ["setuptools>=45", "wheel", "setuptools_scm[toml]>=6.2"] build-backend = "setuptools.build_meta" [project] name = "chemprop" description = "Molecular Property Prediction with Message Passing Neural Networks" version = "2.1.2" authors = [ {name = "The Chemprop Development Team (see LICENSE.txt)", email="chemprop@mit.edu"} ] readme = "README.md" license = {text = "MIT"} classifiers = [ "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.11", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent" ] keywords = [ "chemistry", "machine learning", "property prediction", "message passing neural network", "graph neural network", "drug discovery" ] requires-python = ">=3.11" dependencies = [ "lightning >= 2.0", "numpy", "pandas", "rdkit", "scikit-learn", "scipy", "torch >= 2.1", "astartes[molecules]", "ConfigArgParse", "rich", "descriptastorus", ] [project.optional-dependencies] hpopt = ["ray[tune]", "hyperopt", "optuna"] dev = ["black == 23.*", "bumpversion", "autopep8", "flake8", "pytest", "pytest-cov", "isort"] docs = ["nbsphinx", "sphinx", "sphinx-argparse != 0.5.0", "sphinx-autobuild", "sphinx-autoapi", "sphinxcontrib-bibtex", "sphinx-book-theme", "nbsphinx-link", "ipykernel", "docutils < 0.21", "readthedocs-sphinx-ext", "pandoc"] test = ["pytest >= 6.2", "pytest-cov"] notebooks = ["ipykernel", "matplotlib"] [project.urls] documentation = "https://chemprop.readthedocs.io/en/latest/" source = "https://github.com/chemprop/chemprop" PyPi = "https://pypi.org/project/chemprop/" [project.scripts] chemprop = "chemprop.cli.main:main" [tool.black] line-length = 100 target-version = ["py311"] skip-magic-trailing-comma = true required-version = "23" [tool.autopep8] in_place = true recursive = true aggressive = 2 max_line_length = 100 [tool.pytest.ini_options] addopts = "--cov chemprop" [tool.isort] profile = "black" line_length = 100 force_sort_within_sections = true