SumUp / app.py
harao-ml's picture
UI spruce up
acfff18 verified
raw
history blame
8.84 kB
import gradio as gr
import requests
from newspaper import Article
from transformers import pipeline
import nltk
import os
import PyPDF2
# Load summarization pipeline
summarizer = pipeline("summarization", model="harao-ml/flant5-finetuned-summarize")
# Function to split text into smaller chunks
def split_text(text, max_tokens=512):
words = text.split()
for i in range(0, len(words), max_tokens):
yield ' '.join(words[i:i + max_tokens])
# Function to clean text
def clean_text(text):
text = ' '.join(text.split())
text = ' '.join(word for word in text.split() if len(word) < 100)
return text
# Helper function to fetch and parse an article from a URL
def fetch_article_details(url):
try:
article = Article(url)
article.download()
article.parse()
title = article.title or "Untitled"
author = ", ".join(article.authors) if article.authors else "Unknown"
pub_date = article.publish_date.strftime('%B %d, %Y') if article.publish_date else "Unknown"
return title, author, pub_date, article.text
except Exception as e:
return None, None, None, f"Error fetching article: {str(e)}"
# Helper function to generate a summary
def generate_summary(content):
if not content.strip():
return "No input provided."
text = content
cleaned_text = clean_text(text)
chunks = list(split_text(cleaned_text))
cons_summary = ''.join([summarizer(chunk, do_sample=False)[0]['summary_text'] for chunk in chunks if chunk.strip()]) if chunks else ''
summary = summarizer(text, do_sample=False)[0]['summary_text']
return cons_summary
# Summarize from text or URL
def summarize_input(mixed_input):
if mixed_input.startswith("http://") or mixed_input.startswith("https://"):
title, author, pub_date, content = fetch_article_details(mixed_input)
if content.startswith("Error"):
return f"### Error\n\n{content}"
summary = generate_summary(content)
return f"**Title:** {title}\n\n**Author(s):** {author}\n\n**Published:** {pub_date}\n\n**πŸ“ Summary** \n\n{summary}\n\n[πŸ”— Read more]({mixed_input})\n\n---"
else:
summary = generate_summary(mixed_input)
return f"## πŸ“ Summary \n\n{summary}\n\nπŸ“Ž **Original Text:**\n\n{mixed_input}\n\n---"
# Function to summarize a file (PDF or TXT)
def summarize_file(file):
try:
if file is None: # Handle the case where no file is provided
return "" # Return an empty string instead of an error message
text = ""
if file.name.endswith(".pdf"):
with open(file.name, "rb") as f:
reader = PyPDF2.PdfReader(f)
for page in reader.pages:
text += page.extract_text() or ""
elif file.name.endswith(".txt"):
with open(file.name, "r", encoding="utf-8") as f:
text = f.read()
else:
return "❌ Unsupported file type."
if not text.strip():
return "❌ No text found in file."
summary = generate_summary(text)
original_text = text
# Combine the outputs into a single string
result = (
f"### πŸ“ Summary\n\n"
f"{summary}\n\n"
f"---\n\n"
f"πŸ“Ž **Original Extracted Text:**\n\n{original_text}"
)
return result
except Exception as e:
return f"❌ Error processing file: {str(e)}"
# Function to fetch top headlines from NewsAPI and summarize them
def fetch_news():
url = 'https://newsapi.org/v2/top-headlines'
params = {
'apiKey': api_key,
'language': 'en',
'sources': 'associated-press',
'pageSize': 10
}
try:
response = requests.get(url, params=params)
if response.status_code != 200:
return f"Error: Failed to fetch news. Status code: {response.status_code}"
articles = response.json().get("articles", [])
summaries = [f'## πŸ“° Top Stories - Instant Insights\n\n']
for article in articles:
title = article.get("title", "No title")
article_url = article.get("url", "#")
author = article.get("author", "Unknown")
pub_date = article.get("publishedAt", "Unknown")
content = extract_full_content(article_url) or article.get("content") or article.get("description") or ""
summary = generate_summary(content)
summaries.append(f"**{title}** \n\n**Author(s):** {author}\n\n**Published:** {pub_date}\n\n**πŸ“ Summary:** {summary}\n\n [πŸ”— Read more]({article_url})\n\n---")
if not summaries:
return "### No articles could be summarized."
return "\n\n".join(summaries)
except Exception as e:
return f"### Error fetching news\n\n{str(e)}"
# Helper function to extract full content using newspaper3k
def extract_full_content(url):
try:
article = Article(url)
article.download()
article.parse()
return article.text
except Exception:
return None
# Gradio interface
with gr.Blocks(theme=gr.themes.Default(font="Arial", font_mono="Courier New")) as demo:
# Header Section
gr.Markdown("# πŸ“° Sum Up! Stay Informed, Instantly")
gr.Markdown("### FLAN-T5-Driven Summarizer for Multi-Format Content")
gr.Markdown("Sum Up! effectively distills lengthy content into clear, concise summaries with just a text input, file upload, or URL. Stay informed with instant access to auto-summarized top news headlinesβ€”all in just one click.")
# Input Section
gr.Markdown("---") # Horizontal line for separation
with gr.Row():
# Left Column: Collapsible Sidebar for Latest News
with gr.Column(scale=1, min_width=300):
with gr.Accordion("πŸ“’ News at a Glance", open=False):
gr.Markdown("**Source: Associated Press**")
gr.Markdown(
"Click to get today's top news from the Associated Press, simplified and ready to read.")
news_btn = gr.Button("⚑ News Now", variant="primary", elem_id="news-now-btn")
# Right Column: Text Input and File Upload
with gr.Column(scale=2, min_width=400):
gr.Markdown("### Provide content to summarize")
gr.Markdown("#### Enter Text or URL")
input_box = gr.Textbox(
label="Enter URL or Text",
placeholder="Paste a URL or text here...",
lines=5,
)
summarize_btn = gr.Button("πŸ” Summarize", variant="primary", elem_id="summarize-btn")
# Clear Button placed below the Summarize button
clear_btn = gr.Button("Clear", variant="secondary", elem_id="clear-btn")
gr.Markdown("#### Upload a File")
file_input = gr.File(
label="Upload a .pdf or .txt file", file_types=[".pdf", ".txt"]
)
gr.Markdown("**Note:** Only PDF and TXT files are supported.")
# Output Section
gr.Markdown("---") # Horizontal line for separation
gr.Markdown("### πŸ’‘ Key Takeaways")
with gr.Row():
with gr.Column(scale=1):
gen_output = gr.Markdown() # Use a valid output component
# Link buttons to their respective functions
summarize_btn.click(fn=summarize_input, inputs=input_box, outputs=gen_output)
file_input.change(fn=summarize_file, inputs=file_input, outputs=gen_output)
news_btn.click(fn=fetch_news, inputs=[], outputs=gen_output)
# Clear button functionality
clear_btn.click(
fn=lambda: ("", None, ""), # Clear all inputs and outputs
inputs=[],
outputs=[input_box, file_input, gen_output],
)
# Ensure gen_output is properly reset
gen_output = gr.Markdown(value="") # Initialize with an empty value
# Add custom CSS for better styling
css = """
#summarize-btn {
background-color: #4CAF50 !important; /* Green for Summarize */
color: white !important;
font-size: 16px !important;
padding: 10px 20px !important;
border-radius: 5px !important;
margin-top: 20px !important;
width: 100%;
}
#news-now-btn {
background-color: #0078D7 !important; /* Blue for News Now */
color: white !important;
font-size: 16px !important;
padding: 10px 20px !important;
border-radius: 5px !important;
margin-top: 20px !important;
width: 100%;
}
#clear-btn {
background-color: #d6d8db !important; /* Lighter Gray for Clear */
color: black !important;
font-size: 16px !important;
padding: 10px 20px !important;
border-radius: 5px !important;
margin-top: 20px !important;
width: 100%;
}
"""
# Apply the custom CSS
demo.css = css
if __name__ == "__main__":
demo.launch()