File size: 5,223 Bytes
5549e15 8ab25b3 5549e15 8ab25b3 5549e15 8ab25b3 5549e15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import gradio as gr
import requests
from newspaper import Article
from transformers import pipeline
import config
import os
import nltk
# Load summarization pipeline
summarizer = pipeline("summarization", model="harao-ml/flant5-finetuned-summarize")
# Function to split text into smaller chunks
def split_text(text, max_tokens=512):
words = text.split()
for i in range(0, len(words), max_tokens):
yield ' '.join(words[i:i + max_tokens])
# Function to clean text
def clean_text(text):
text = ' '.join(text.split())
text = ' '.join(word for word in text.split() if len(word) < 100)
return text
# Helper function to fetch and parse an article from a URL
def fetch_article_details(url):
try:
article = Article(url)
article.download()
article.parse()
title = article.title or "Untitled"
author = ", ".join(article.authors) if article.authors else "Unknown"
pub_date = article.publish_date.strftime('%B %d, %Y') if article.publish_date else "Unknown"
return title, author, pub_date, article.text
except Exception as e:
return None, None, None, f"Error fetching article: {str(e)}"
# Helper function to generate a summary
def generate_summary(content):
if not content.strip():
return "No input provided."
text = content
cleaned_text = clean_text(text)
chunks = list(split_text(cleaned_text))
cons_summary = ''.join([summarizer(chunk, do_sample=False)[0]['summary_text'] for chunk in chunks if chunk.strip()]) if chunks else ''
summary = summarizer(text, do_sample=False)[0]['summary_text']
return cons_summary
# Summarize from text or URL
def summarize_input(mixed_input):
if mixed_input.startswith("http://") or mixed_input.startswith("https://"):
title, author, pub_date, content = fetch_article_details(mixed_input)
if content.startswith("Error"):
return f"### Error\n\n{content}"
summary = generate_summary(content)
return f"**Title:** {title}\n\n**Author(s):** {author}\n\n**Published:** {pub_date}\n\n**π Summary** \n\n{summary}\n\n[π Read more]({mixed_input})\n\n---"
else:
summary = generate_summary(mixed_input)
return f"## π Summary \n\n{summary}\n\n**Original Text:**\n\n{mixed_input}\n\n---"
# Function to fetch top headlines from NewsAPI and summarize them
def fetch_news():
url = 'https://newsapi.org/v2/top-headlines'
api_key = os.environ.get("api_key")
params = {
'apiKey': api_key,
'language': 'en',
'sources': 'associated-press',
'pageSize': 10
}
try:
response = requests.get(url, params=params)
if response.status_code != 200:
return f"Error: Failed to fetch news. Status code: {response.status_code}"
articles = response.json().get("articles", [])
summaries = []
for article in articles:
title = article.get("title", "No title")
article_url = article.get("url", "#")
author = article.get("author", "Unknown")
pub_date = article.get("publishedAt", "Unknown")
content = extract_full_content(article_url) or article.get("content") or article.get("description") or ""
summary = generate_summary(content)
summaries.append(f"**{title}** \n\n**Author(s):** {author}\n\n**Published:** {pub_date}\n\n**Summary:** {summary}\n\n [π Read more]({article_url})\n\n---")
if not summaries:
return "### No articles could be summarized."
return "\n\n".join(summaries)
except Exception as e:
return f"### Error fetching news\n\n{str(e)}"
# Helper function to extract full content using newspaper3k
def extract_full_content(url):
try:
article = Article(url)
article.download()
article.parse()
return article.text
except Exception:
return None
# Gradio interface
with gr.Blocks(theme=gr.themes.Base()) as demo:
gr.Markdown("# π° Sum Up! Stay Informed, Instantly")
gr.Markdown(" ## A LLM based News Summarizer App")
# Add a brief description
gr.Markdown("Sum Up! condenses the latest headlines from trusted news sources into clear, concise and easy-to-read summaries, so you can stay informed in seconds.")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Top Stories - A Snapshot ")
gr.Markdown("**Source: Associated Press**")
gr.Markdown("Click the button below to fetch the latest news articles.")
news_btn = gr.Button("ποΈ News Now", variant="primary")
with gr.Column(scale=1):
input_box = gr.Textbox(label="Enter article text or URL", placeholder="Paste article text or link...")
summarize_btn = gr.Button("π Summarize", variant="secondary")
# Output area for displaying results
output_area = gr.Markdown() # Use a valid output component
# Link buttons to their respective functions
summarize_btn.click(fn=summarize_input, inputs=input_box, outputs=output_area)
news_btn.click(fn=fetch_news, inputs=[], outputs=output_area)
if __name__ == "__main__":
demo.launch() |