Spaces:
Running
Running
File size: 10,143 Bytes
d0c5c2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import gradio as gr
import pandas as pd
import cluster_news
import extract_news
import summarizer
import analyze_sentiment
import gather_news
# ------------------ Utilities ------------------
def fetch_content(topic):
articles = gather_news.fetch_articles_newsapi(topic)
if isinstance(articles, str):
articles = gather_news.fetch_articles_google(topic)
if isinstance(articles, str):
return None
try:
articles = sorted(articles, key=lambda x: x.get("publishedAt", ""), reverse=True)[:10]
except Exception:
return None
return articles
def fetch_and_process_latest_news(sentiment_filters):
topic = "Top Headlines"
articles = gather_news.fetch_articles_newsapi("top headlines")
if isinstance(articles, str) or not articles:
return sentiment_filters, "### No latest news available", "", "", "", "", None
articles = sorted(articles, key=lambda x: x.get("publishedAt", ""), reverse=True)[:10]
extracted_articles = extract_summarize_and_analyze_articles(articles)
if not extracted_articles:
return sentiment_filters, "### No content to display", "", "", "", "", None
df = pd.DataFrame(extracted_articles)
result = cluster_news.cluster_and_label_articles(df, content_column="content", summary_column="summary")
cluster_md_blocks = display_clusters_as_columns(result, sentiment_filters)
csv_file, _ = save_clustered_articles(result["dataframe"], topic)
return sentiment_filters, *cluster_md_blocks, csv_file
def extract_summarize_and_analyze_articles(articles):
extracted_articles = []
for article in articles:
url = article.get("url")
if url:
content, _ = extract_news.extract_full_content(url)
if content:
summary = summarizer.generate_summary(content)
sentiment, score = analyze_sentiment.analyze_summary(summary)
extracted_articles.append({
"title": article.get("title", "No title"),
"url": url,
"source": article.get("source", "Unknown"),
"author": article.get("author", "Unknown"),
"publishedAt": article.get("publishedAt", "Unknown"),
"content": content,
"summary": summary,
"sentiment": sentiment,
"score": score
})
return extracted_articles
def extract_summarize_and_analyze_content_from_file(files):
extracted_articles = []
for file in files:
with open(file.name, "r", encoding="utf-8") as f:
content = f.read()
if content.strip():
summary = summarizer.generate_summary(content)
sentiment, score = analyze_sentiment.analyze_summary(summary)
extracted_articles.append({
"title": "Custom File",
"url": "N/A",
"source": "Uploaded File",
"author": "Unknown",
"publishedAt": "Unknown",
"content": content,
"summary": summary,
"sentiment": sentiment,
"score": score
})
return extracted_articles
def extract_summarize_and_analyze_content_from_urls(urls):
extracted_articles = []
for url in urls:
content, title = extract_news.extract_full_content(url)
if content: # Only proceed if content is successfully extracted
summary = summarizer.generate_summary(content)
sentiment, score = analyze_sentiment.analyze_summary(summary)
extracted_articles.append({
"title": title if title else "Untitled Article",
"url": url,
"source": "External Link",
"author": "Unknown",
"publishedAt": "Unknown",
"content": content,
"summary": summary,
"sentiment": sentiment,
"score": score
})
return extracted_articles
def display_clusters_as_columns(result, sentiment_filters=None):
df = result["dataframe"]
detected_topics = result.get("detected_topics", {})
df["sentiment"] = df["sentiment"].str.capitalize()
if sentiment_filters:
df = df[df["sentiment"].isin(sentiment_filters)]
if df.empty:
return ["### ⚠️ No matching articles."] + [""] * 4
clusters = df.groupby("cluster_label")
markdown_blocks = []
for cluster_label, articles in clusters:
cluster_md = f"### 🧩 Cluster {cluster_label}\n"
if cluster_label in detected_topics:
topics = detected_topics[cluster_label]
cluster_md += f"**Primary Topic:** {topics['primary_focus']}\n\n"
if topics["related_topics"]:
cluster_md += f"**Related Topics:** {', '.join(topics['related_topics'])}\n\n"
cluster_md += f"**Articles:** {len(articles)}\n\n"
for _, article in articles.iterrows():
cluster_md += (
f"#### 📰 {article['title']}\n"
f"- **Source:** {article['source']}\n"
f"- **Sentiment:** {article['sentiment']}\n"
f"<details><summary><strong>Summary</strong></summary>\n"
f"{article['summary']}\n"
f"</details>\n"
f"- [Read Full Article]({article['url']})\n\n"
)
markdown_blocks.append(cluster_md)
while len(markdown_blocks) < 5:
markdown_blocks.append("")
return markdown_blocks[:5]
def save_clustered_articles(df, topic):
if df.empty:
return None, None
csv_file = f"{topic.replace(' ', '_')}_clustered_articles.csv"
df.to_csv(csv_file, index=False)
return csv_file, None
# ------------------ Pipeline Trigger ------------------
def update_ui_with_columns(topic, files, urls, sentiment_filters):
extracted_articles = []
if topic.strip():
articles = fetch_content(topic)
if articles:
extracted_articles.extend(extract_summarize_and_analyze_articles(articles))
if files:
extracted_articles.extend(extract_summarize_and_analyze_content_from_file(files))
if urls:
url_list = [url.strip() for url in urls.split("\n") if url.strip()]
extracted_articles.extend(extract_summarize_and_analyze_content_from_urls(url_list))
if not extracted_articles:
return sentiment_filters, "### No content to display", "", "", "", "", None
df = pd.DataFrame(extracted_articles)
result = cluster_news.cluster_and_label_articles(df, content_column="content", summary_column="summary")
cluster_md_blocks = display_clusters_as_columns(result, sentiment_filters)
csv_file, _ = save_clustered_articles(result["dataframe"], topic or "batch_upload")
return sentiment_filters, *cluster_md_blocks, csv_file
def clear_interface():
return (
"", # topic_input
["Positive", "Neutral", "Negative"],# sentiment_filter
gr.update(value=None), # uploaded_files (reset file upload)
"", # urls_input
"", "", "", "", "", # cluster columns 0–4
gr.update(value=None) # csv_output (reset download file)
)
# ------------------ Gradio UI ------------------
with gr.Blocks(theme=gr.themes.Base(), css=".gr-markdown { margin: 10px; }") as demo:
# Header Section
gr.Markdown("# 📰 Quick Pulse")
gr.Markdown("### AI-Powered News Summarization with Real-Time Sentiment and Topic Insights")
gr.Markdown(
"From headlines to insight, Quick Pulse summarizes news stories, captures emotional context, and clusters related topics to provide structured intelligence—faster than ever")
# Input Section
gr.Markdown("---") # Horizontal line for separation
with gr.Accordion("🗞️ Latest Top Headlines", open=False):
latest_news_button = gr.Button("Fetch & Summarize Top 10 Headlines")
with gr.Row():
topic_input = gr.Textbox(label="Enter Topic", placeholder="e.g. climate change")
sentiment_filter = gr.CheckboxGroup(choices=["Positive", "Neutral", "Negative"], value=["Positive", "Neutral", "Negative"], label="Sentiment Filter")
csv_output = gr.File(label="📁 Download Clustered Digest CSV")
with gr.Accordion("📂 Upload Articles (.txt files)", open=False):
uploaded_files = gr.File(label="Upload .txt Files", file_types=[".txt"], file_count="multiple")
with gr.Accordion("🔗 Enter Multiple URLs", open=False):
urls_input = gr.Textbox(label="Enter URLs (newline separated)", lines=4)
with gr.Row():
submit_button = gr.Button(" Generate Digest")
clear_button = gr.Button(" Clear")
with gr.Row():
column_0 = gr.Markdown()
column_1 = gr.Markdown()
column_2 = gr.Markdown()
column_3 = gr.Markdown()
column_4 = gr.Markdown()
submit_button.click(
fn=update_ui_with_columns,
inputs=[topic_input, uploaded_files, urls_input, sentiment_filter],
outputs=[
sentiment_filter,
column_0, column_1, column_2, column_3, column_4,
csv_output
]
)
latest_news_button.click(
fn=fetch_and_process_latest_news,
inputs=[sentiment_filter],
outputs=[
sentiment_filter,
column_0, column_1, column_2, column_3, column_4,
csv_output
]
)
clear_button.click(
fn=clear_interface,
inputs=[],
outputs=[
topic_input, # 1
sentiment_filter, # 2
uploaded_files, # 3
urls_input, # 4
column_0, # 5
column_1, # 6
column_2, # 7
column_3, # 8
column_4, # 9
csv_output # 10
]
)
if __name__ == "__main__":
demo.launch()
|