File size: 13,403 Bytes
97420da
 
 
d0c5c2c
 
 
 
97420da
 
 
d0c5c2c
97420da
 
 
 
 
 
 
d0c5c2c
97420da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0c5c2c
 
97420da
 
d0c5c2c
97420da
 
 
d0c5c2c
97420da
 
 
d0c5c2c
97420da
 
 
 
 
 
 
d0c5c2c
97420da
 
 
 
 
 
 
d0c5c2c
97420da
d0c5c2c
 
 
 
97420da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0c5c2c
 
97420da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0c5c2c
 
97420da
 
d0c5c2c
97420da
d0c5c2c
97420da
 
d0c5c2c
 
 
 
 
 
 
 
 
 
 
 
97420da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0c5c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
97420da
d0c5c2c
 
97420da
 
d0c5c2c
 
 
 
 
 
97420da
d0c5c2c
97420da
 
d0c5c2c
97420da
d0c5c2c
97420da
 
 
 
d0c5c2c
 
 
 
 
 
 
97420da
 
 
d0c5c2c
 
97420da
 
 
 
d0c5c2c
97420da
 
 
 
d0c5c2c
 
97420da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0c5c2c
 
 
97420da
d0c5c2c
 
 
97420da
 
 
d0c5c2c
 
 
 
 
 
 
 
 
97420da
 
 
d0c5c2c
 
 
 
97420da
 
 
 
 
 
 
 
 
 
d0c5c2c
 
97420da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
## This script provides a Gradio interface for gathering, clustering, summarizing, and analyzing news articles with sentiment analysis and topic modeling.

import gather_news
import pandas as pd
import cluster_news
import summarizer
import analyze_sentiment
import extract_news
import gradio as gr
import plotly.express as px

def plot_topic_frequency(result):
    df = result["dataframe"]
    topic_counts = df["cluster_label"].value_counts().reset_index()
    topic_counts.columns = ["Topic", "Count"]
    fig = px.bar(topic_counts, x="Topic", y="Count", title="Topic Frequency", color="Topic")
    fig.update_layout(showlegend=False, height=350)
    return fig

def plot_sentiment_trends(result):
    df = result["dataframe"]
    sentiment_counts = df["sentiment"].value_counts().reset_index()
    sentiment_counts.columns = ["Sentiment", "Count"]
    fig = px.pie(sentiment_counts, names="Sentiment", values="Count", title="Sentiment Distribution")
    fig.update_traces(textinfo='label+percent')
    fig.update_layout(height=350)
    return fig

def render_top_clusters_table(result, top_n=5):
    df = result["dataframe"]
    cluster_counts = df["cluster_label"].value_counts().reset_index()
    cluster_counts.columns = ["Cluster", "Articles"]
    top_clusters = cluster_counts.head(top_n)
    return top_clusters

def fetch_and_process_latest_news(sentiment_filters):
    articles = gather_news.fetch_newsapi_top_headlines()
    return process_and_display_articles(articles, sentiment_filters, "Top Headlines")

def fetch_and_process_topic_news(topic, sentiment_filters):
    articles = gather_news.fetch_newsapi_everything(topic)
    return process_and_display_articles(articles, sentiment_filters, topic or "Topic")

def process_and_display_articles(articles, sentiment_filters, topic_label):
    if not articles:
        return sentiment_filters, "", "", "", "", "", None, None, None, gr.update(visible=False)

    articles = sorted(articles, key=lambda x: x.get("publishedAt", ""), reverse=True)
    extracted_articles = extract_summarize_and_analyze_articles(articles)
    deduped_articles = deduplicate_articles(extracted_articles)
    if not deduped_articles:
        return sentiment_filters, "", "", "", "", "", None, None, None, gr.update(visible=False)

    df = pd.DataFrame(deduped_articles)
    result = cluster_news.cluster_and_label_articles(df, content_column="content", summary_column="summary")
    cluster_md_blocks = display_clusters_as_columns_grouped_by_sentiment(result, sentiment_filters)
    csv_file, _ = save_clustered_articles(result["dataframe"], topic_label)

    # Analytics
    topic_fig = plot_topic_frequency(result)
    sentiment_fig = plot_sentiment_trends(result)
    top_clusters_table = render_top_clusters_table(result)

    return sentiment_filters, *cluster_md_blocks, csv_file, topic_fig, sentiment_fig, top_clusters_table, gr.update(visible=True)

def extract_summarize_and_analyze_articles(articles):
    extracted_articles = []
    for article in articles:
        content = article.get("text") or article.get("content")
        if not content:
            continue
        title = article.get("title", "No title")
        summary = summarizer.generate_summary(content)
        sentiment, score = analyze_sentiment.analyze_summary(summary)
        extracted_articles.append({
            "title": title,
            "url": article.get("url"),
            "source": article.get("source", "Unknown"),
            "author": article.get("author", "Unknown"),
            "publishedAt": article.get("publishedAt", "Unknown"),
            "content": content,
            "summary": summary,
            "sentiment": sentiment,
            "score": score
        })
    return extracted_articles

def deduplicate_articles(articles):
    seen_urls = set()
    seen_title_source = set()
    seen_title_summary = set()
    deduped = []
    for art in articles:
        url = art.get("url")
        title = art.get("title", "").strip().lower()
        source = art.get("source", "").strip().lower()
        summary = art.get("summary", "").strip().lower()
        key_title_source = (title, source)
        key_title_summary = (title, summary)
        if url and url in seen_urls:
            continue
        if key_title_source in seen_title_source:
            continue
        if key_title_summary in seen_title_summary:
            continue
        deduped.append(art)
        if url:
            seen_urls.add(url)
        seen_title_source.add(key_title_source)
        seen_title_summary.add(key_title_summary)
    return deduped

def extract_summarize_and_analyze_content_from_urls(urls):
    articles = extract_news.extract_news_articles(urls)
    return extract_summarize_and_analyze_articles(articles)

def display_clusters_as_columns_grouped_by_sentiment(result, sentiment_filters=None):
    df = result["dataframe"]
    cluster_primary_topics = result.get("cluster_primary_topics", {})
    cluster_related_topics = result.get("cluster_related_topics", {})
    df["sentiment"] = df["sentiment"].str.capitalize()

    if sentiment_filters:
        df = df[df["sentiment"].isin(sentiment_filters)]

    if df.empty:
        return ["### ⚠️ No matching articles."] + [""] * 4

    clusters = df.groupby("cluster_label")
    markdown_blocks = []

    for cluster_label, articles in clusters:
        cluster_md = f"<div style='border:2px solid #e0e0e0; border-radius:10px; margin-bottom:18px; padding:18px; background: #f9f9fa;'>"
        cluster_md += f"<h3 style='color:#2d6cdf;'>🧩 Cluster: {cluster_label}</h3>"

        lda_topics = articles["lda_topics"].iloc[0] if "lda_topics" in articles else ""
        if lda_topics:
            cluster_md += f"<b style='color:#0d47a1;'>Main Themes:</b> <span style='color:#1976d2'>{lda_topics}</span><br>"

        primary = cluster_primary_topics.get(cluster_label, [])
        if primary:
            cluster_md += f"<b style='color:#1b5e20;'>Primary Topics:</b> <span style='color:#388e3c'>{', '.join(primary)}</span><br>"

        related = cluster_related_topics.get(cluster_label, [])
        if related:
            cluster_md += f"<b style='color:#616161;'>Related Topics:</b> <span style='color:#757575'>{', '.join(related)}</span><br>"

        cluster_md += f"<b>Articles:</b> {len(articles)}<br><br>"

        for sentiment in ["Positive", "Neutral", "Negative"]:
            sentiment_articles = articles[articles["sentiment"] == sentiment]
            if not sentiment_articles.empty:
                color = {"Positive": "#e8f5e9", "Neutral": "#e3f2fd", "Negative": "#ffebee"}[sentiment]
                border = {"Positive": "#43a047", "Neutral": "#1976d2", "Negative": "#c62828"}[sentiment]
                sentiment_label = {
                    "Positive": "Positive News",
                    "Neutral": "Neutral News",
                    "Negative": "Negative News"
                }[sentiment]
                cluster_md += (
                    f"<div style='background:{color}; border-left:6px solid {border}; border-radius:6px; margin-bottom:10px; padding:10px;'>"
                    f"<span style='font-size:1.2em;'><b>{sentiment_label} ({len(sentiment_articles)})</b></span><br>"
                )
                for _, article in sentiment_articles.iterrows():
                    cluster_md += (
                        f"<div style='margin:10px 0 10px 0; padding:10px; border-bottom:1px solid #e0e0e0;'>"
                        f"<span style='font-weight:bold; color:#37474f;'>πŸ“° {article['title']}</span><br>"
                        f"<span style='font-size:0.95em;'>"
                        f"<b>Source:</b> {article['source']}<br>"
                        f"<details><summary style='cursor:pointer; color:#1976d2;'><strong>Summary</strong></summary>"
                        f"<div style='margin-left:10px; color:#424242;'>{article['summary']}</div></details>"
                        f"<a href='{article['url']}' target='_blank' style='color:#1976d2;'>Read Full Article</a>"
                        f"</span></div>"
                    )
                cluster_md += "</div>"
        cluster_md += "</div>"
        markdown_blocks.append(cluster_md)

    while len(markdown_blocks) < 5:
        markdown_blocks.append("")

    return markdown_blocks[:5]

def save_clustered_articles(df, topic):
    if df.empty:
        return None, None
    csv_file = f"{topic.replace(' ', '_')}_clustered_articles.csv"
    df.to_csv(csv_file, index=False)
    return csv_file, None

def update_ui_with_columns(topic, urls, sentiment_filters):
    extracted_articles = []

    if topic and topic.strip():
        return fetch_and_process_topic_news(topic, sentiment_filters)

    if urls:
        url_list = [url.strip() for url in urls.split("\n") if url.strip()]
        extracted_articles.extend(extract_summarize_and_analyze_content_from_urls(url_list))

    if not extracted_articles:
        return sentiment_filters, "", "", "", "", "", None, None, None, gr.update(visible=False)

    deduped_articles = deduplicate_articles(extracted_articles)
    df = pd.DataFrame(deduped_articles)
    result = cluster_news.cluster_and_label_articles(df, content_column="content", summary_column="summary")
    cluster_md_blocks = display_clusters_as_columns_grouped_by_sentiment(result, sentiment_filters)
    csv_file, _ = save_clustered_articles(result["dataframe"], topic or "batch_upload")
    topic_fig = plot_topic_frequency(result)
    sentiment_fig = plot_sentiment_trends(result)
    top_clusters_table = render_top_clusters_table(result)
    return sentiment_filters, *cluster_md_blocks, csv_file, topic_fig, sentiment_fig, top_clusters_table, gr.update(visible=True)

def clear_interface():
    return (
        "",                                 # topic_input
        ["Positive", "Neutral", "Negative"],# sentiment_filter
        "",                                 # urls_input
        "", "", "", "", "",                 # cluster columns 0–4
        gr.update(value=None),              # csv_output (reset download file)
        None, None, None,                   # topic_fig, sentiment_fig, top_clusters_table
        gr.update(visible=False)            # Hide Clustered News Digest section
    )

with gr.Blocks(theme=gr.themes.Base(), css="""
.gr-markdown { margin: 10px; }
.analytics-card {background: #f5f7fa; border-radius: 10px; padding: 18px; margin-bottom: 18px;}
""") as demo:
    gr.Markdown(
        "<h1 style='text-align:center;'>πŸ“° Quick Pulse</h1>"
        "<h3 style='text-align:center; color:#1976d2;'>AI-Powered News Summarization with Real-Time Sentiment and Topic Insights</h3>"
        "<p style='text-align:center;'>From headlines to insight, Quick Pulse summarizes news stories, captures emotional context, clusters related topics, and provides analytics at a glance.</p>"
    )

    with gr.Row():
        with gr.Column(scale=2):
            topic_input = gr.Textbox(label="Enter Topic", placeholder="e.g. climate change")
            sentiment_filter = gr.CheckboxGroup(choices=["Positive", "Neutral", "Negative"], value=["Positive", "Neutral", "Negative"], label="Sentiment Filter")
            with gr.Accordion("πŸ”— Enter Multiple URLs", open=False):
                urls_input = gr.Textbox(label="Enter URLs (newline separated)", lines=4)
            with gr.Row():
                submit_button = gr.Button(" Generate Digest", scale=1)
                latest_news_button = gr.Button("Fetch & Summarize Top News", scale=1)
                clear_button = gr.Button(" Clear", scale=1)
            csv_output = gr.File(label="πŸ“ Download Clustered Digest CSV")
        with gr.Column(scale=3):
            with gr.Row():
                topic_fig = gr.Plot(label="Topic Frequency")
                sentiment_fig = gr.Plot(label="Sentiment Trends")
            top_clusters_table = gr.Dataframe(label="Top Clusters")

    gr.Markdown("---")

    clustered_digest_section = gr.Group(visible=False)
    with clustered_digest_section:
        gr.Markdown("<h3 style='color:#1976d2;'>Clustered News Digest</h3>")
        with gr.Row():
            column_0 = gr.Markdown()
            column_1 = gr.Markdown()
            column_2 = gr.Markdown()
            column_3 = gr.Markdown()
            column_4 = gr.Markdown()

    submit_button.click(
        fn=update_ui_with_columns,
        inputs=[topic_input, urls_input, sentiment_filter],
        outputs=[
            sentiment_filter,
            column_0, column_1, column_2, column_3, column_4,
            csv_output,
            topic_fig, sentiment_fig, top_clusters_table,
            clustered_digest_section
        ]
    )

    latest_news_button.click(
        fn=fetch_and_process_latest_news,
        inputs=[sentiment_filter],
        outputs=[
            sentiment_filter,
            column_0, column_1, column_2, column_3, column_4,
            csv_output,
            topic_fig, sentiment_fig, top_clusters_table,
            clustered_digest_section
        ]
    )

    clear_button.click(
        fn=clear_interface,
        inputs=[],
        outputs=[
            topic_input, sentiment_filter, urls_input,
            column_0, column_1, column_2, column_3, column_4,
            csv_output,
            topic_fig, sentiment_fig, top_clusters_table,
            clustered_digest_section
        ]
    )

if __name__ == "__main__":
    demo.launch()