Spaces:
Sleeping
Sleeping
File size: 6,743 Bytes
97420da 7c3be27 97420da 7c3be27 97420da ec9fdfe 97420da 7c3be27 97420da 7c3be27 97420da 7c3be27 97420da 7c3be27 97420da 7c3be27 97420da 7c3be27 97420da 7c3be27 97420da 7c3be27 97420da 7c3be27 97420da 7c3be27 97420da 7c3be27 97420da 7c3be27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# cluster_news.py
# Clusters news articles using HDBSCAN, labels clusters with TF-IDF n-grams and LDA topics,
# and falls back to a representative summary if the label is too vague.
import numpy as np
import pandas as pd
from collections import defaultdict
from sentence_transformers import SentenceTransformer
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.metrics.pairwise import cosine_distances
from sklearn.decomposition import LatentDirichletAllocation
import hdbscan
import umap
def generate_embeddings(df, content_column):
model = SentenceTransformer('all-MiniLM-L6-v2')
embeddings = model.encode(df[content_column].tolist(), show_progress_bar=True)
return np.array(embeddings)
def reduce_dimensions(embeddings, n_neighbors=10, min_dist=0.0, n_components=5, random_state=42):
n_samples = embeddings.shape[0]
if n_samples < 3:
return embeddings
n_components = min(max(2, n_components), n_samples - 2)
n_neighbors = min(max(2, n_neighbors), n_samples - 1)
reducer = umap.UMAP(
n_neighbors=n_neighbors,
min_dist=min_dist,
n_components=n_components,
random_state=random_state,
n_jobs=1,
metric='cosine'
)
reduced = reducer.fit_transform(embeddings)
return reduced
def cluster_with_hdbscan(embeddings, min_cluster_size=2, min_samples=1):
clusterer = hdbscan.HDBSCAN(
min_cluster_size=min_cluster_size,
min_samples=min_samples,
metric='euclidean'
)
labels = clusterer.fit_predict(embeddings)
return labels, clusterer
def extract_tfidf_labels(df, content_column, cluster_labels, top_n=6):
grouped = defaultdict(list)
for idx, label in enumerate(cluster_labels):
if label == -1: continue
grouped[label].append(df.iloc[idx][content_column])
tfidf_labels = {}
for cluster_id, texts in grouped.items():
vectorizer = TfidfVectorizer(ngram_range=(1, 2), stop_words="english", max_features=50)
tfidf_matrix = vectorizer.fit_transform(texts)
avg_tfidf = tfidf_matrix.mean(axis=0).A1
if len(avg_tfidf) == 0:
tfidf_labels[cluster_id] = []
continue
top_indices = np.argsort(avg_tfidf)[::-1][:top_n]
top_terms = [vectorizer.get_feature_names_out()[i] for i in top_indices]
tfidf_labels[cluster_id] = top_terms
return tfidf_labels
def lda_topic_modeling(texts, n_topics=1, n_words=6):
vectorizer = CountVectorizer(stop_words='english', ngram_range=(1, 2), max_features=1000)
X = vectorizer.fit_transform(texts)
if X.shape[0] < n_topics:
n_topics = max(1, X.shape[0])
lda = LatentDirichletAllocation(n_components=n_topics, random_state=42)
lda.fit(X)
topic_words = []
for topic_idx, topic in enumerate(lda.components_):
top_indices = topic.argsort()[:-n_words - 1:-1]
words = [vectorizer.get_feature_names_out()[i] for i in top_indices]
topic_words.extend(words)
return topic_words
def get_representative_summary(df, cluster_indices, embeddings, centroid):
cluster_embs = embeddings[cluster_indices]
dists = cosine_distances(cluster_embs, centroid.reshape(1, -1)).flatten()
min_idx = np.argmin(dists)
return df.iloc[cluster_indices[min_idx]]["summary"]
def label_clusters_hybrid(df, content_column, summary_column, cluster_labels, embeddings, tfidf_labels, lda_labels, vague_threshold=15):
cluster_label_map = {}
cluster_primary_topics = {}
cluster_related_topics = {}
for cluster_id in set(cluster_labels):
if cluster_id == -1:
continue
topics = lda_labels.get(cluster_id, []) or tfidf_labels.get(cluster_id, [])
topics = [t for t in topics if t]
primary_topics = topics[:3]
related_topics = topics[3:]
label = ", ".join(primary_topics) if primary_topics else ""
if not label or len(label) < vague_threshold:
cluster_indices = np.where(cluster_labels == cluster_id)[0]
centroid = embeddings[cluster_indices].mean(axis=0)
rep_summary = get_representative_summary(df, cluster_indices, embeddings, centroid)
label = rep_summary[:80] + "..." if len(rep_summary) > 80 else rep_summary
cluster_label_map[cluster_id] = label
cluster_primary_topics[cluster_id] = primary_topics
cluster_related_topics[cluster_id] = related_topics
return cluster_label_map, cluster_primary_topics, cluster_related_topics
def cluster_and_label_articles(
df,
content_column="content",
summary_column="summary",
min_cluster_size=2,
min_samples=1,
n_neighbors=10,
min_dist=0.0,
n_components=5,
top_n=6,
lda_n_topics=1,
lda_n_words=6,
vague_threshold=15
):
if df.empty:
return None
min_cluster_size = max(2, min(min_cluster_size, len(df) // 2)) if len(df) < 20 else min_cluster_size
embeddings = generate_embeddings(df, content_column)
reduced_embeddings = reduce_dimensions(embeddings, n_neighbors, min_dist, n_components)
cluster_labels, clusterer = cluster_with_hdbscan(reduced_embeddings, min_cluster_size, min_samples)
df['cluster_id'] = cluster_labels
tfidf_labels = extract_tfidf_labels(df, content_column, cluster_labels, top_n=top_n)
lda_labels = {}
for cluster_id in set(cluster_labels):
if cluster_id == -1:
continue
cluster_texts = df[cluster_labels == cluster_id][content_column].tolist()
if cluster_texts:
topics = lda_topic_modeling(
cluster_texts, n_topics=lda_n_topics, n_words=lda_n_words
)
lda_labels[cluster_id] = topics
else:
lda_labels[cluster_id] = []
cluster_label_map, cluster_primary_topics, cluster_related_topics = label_clusters_hybrid(
df, content_column, summary_column, cluster_labels, embeddings, tfidf_labels, lda_labels, vague_threshold=vague_threshold
)
df['cluster_label'] = [
cluster_label_map.get(cid, "Noise/Other") if cid != -1 else "Noise/Other"
for cid in cluster_labels
]
df['lda_topics'] = [
", ".join(lda_labels.get(cid, [])) if cid != -1 else "" for cid in cluster_labels
]
detected_topics = {
label: {
"size": int((df['cluster_label'] == label).sum())
}
for label in set(df['cluster_label']) if label != "Noise/Other"
}
return {
"dataframe": df,
"detected_topics": detected_topics,
"number_of_clusters": len(detected_topics),
"cluster_primary_topics": cluster_primary_topics,
"cluster_related_topics": cluster_related_topics
} |