import streamlit as st import pandas as pd import json from tools import sourceformat as sf #===config=== st.set_page_config( page_title="Coconut", page_icon="🥥", layout="wide", initial_sidebar_state="collapsed" ) hide_streamlit_style = """ """ st.markdown(hide_streamlit_style, unsafe_allow_html=True) st.page_link("https://www.coconut-libtool.com/the-app", label="Go to app", icon="🥥") def reset_data(): st.cache_data.clear() #===check filetype=== @st.cache_data(ttl=3600) def get_ext(extype): extype = uploaded_file.name return extype #===upload=== @st.cache_data(ttl=3600) def upload(extype): keywords = pd.read_csv(uploaded_file) if "dimensions" in uploaded_file.name.lower(): keywords = sf.dim(keywords) col_dict = {'MeSH terms': 'Keywords', 'PubYear': 'Year', 'Times cited': 'Cited by', 'Publication Type': 'Document Type' } keywords.rename(columns=col_dict, inplace=True) return keywords @st.cache_data(ttl=3600) def conv_txt(extype): if("PMID" in (uploaded_file.read()).decode()): uploaded_file.seek(0) papers = sf.medline(uploaded_file) print(papers) return papers col_dict = {'TI': 'Title', 'SO': 'Source title', 'DE': 'Author Keywords', 'DT': 'Document Type', 'AB': 'Abstract', 'TC': 'Cited by', 'PY': 'Year', 'ID': 'Keywords Plus', 'rights_date_used': 'Year'} uploaded_file.seek(0) papers = pd.read_csv(uploaded_file, sep='\t') if("htid" in papers.columns): papers = sf.htrc(papers) papers.rename(columns=col_dict, inplace=True) print(papers) return papers @st.cache_data(ttl=3600) def conv_json(extype): col_dict={'title': 'title', 'rights_date_used': 'Year', 'content_provider_code':'Source title' } data = json.load(uploaded_file) hathifile = data['gathers'] keywords = pd.DataFrame.from_records(hathifile) keywords = sf.htrc(keywords) keywords['Cited by'] = keywords.groupby(['Keywords'])['Keywords'].transform('size') keywords.rename(columns=col_dict,inplace=True) return keywords @st.cache_data(ttl=3600) def conv_pub(extype): if (get_ext(extype)).endswith('.tar.gz'): bytedata = extype.read() keywords = sf.readPub(bytedata) elif (get_ext(extype)).endswith('.xml'): bytedata = extype.read() keywords = sf.readxml(bytedata) return keywords st.header('File Checker', anchor=False) st.subheader('Put your file here...', anchor=False) #===read data=== uploaded_file = st.file_uploader('', type=['csv','txt','json', 'tar.gz', 'xml'], on_change=reset_data) if uploaded_file is not None: extype = get_ext(uploaded_file) if extype.endswith('.csv'): data = upload(extype) elif extype.endswith('.txt'): data = conv_txt(extype) elif extype.endswith('.json'): data = conv_json(extype) elif extype.endswith('.tar.gz') or extype.endswith('.xml'): data = conv_pub(uploaded_file) col1, col2, col3 = st.columns(3) with col1: #===check keywords=== keycheck = list(data.columns) keycheck = [k for k in keycheck if 'Keyword' in k] container1 = st.container(border=True) if not keycheck: container1.subheader('❌ Keyword Stem', divider='red', anchor=False) container1.write("Unfortunately, you don't have a column containing keywords in your data. Please check again. If you want to use it in another column, please rename it to 'Keywords'.") else: container1.subheader('✔️ Keyword Stem', divider='blue', anchor=False) container1.write('Congratulations! You can use Keywords Stem') #===Visualization=== if 'Publication Year' in data.columns: data.rename(columns={'Publication Year': 'Year', 'Citing Works Count': 'Cited by', 'Publication Type': 'Document Type', 'Source Title': 'Source title'}, inplace=True) col2check = ['Document Type','Source title','Cited by','Year'] miss_col = [column for column in col2check if column not in data.columns] container2 = st.container(border=True) if not miss_col: container2.subheader('✔️ Sunburst', divider='blue', anchor=False) container2.write('Congratulations! You can use Sunburst') else: container2.subheader('❌ Sunburst', divider='red', anchor=False) miss_col_str = ', '.join(miss_col) container2.write(f"Unfortunately, you don't have: {miss_col_str}. Please check again.") with col2: #===check any obj=== coldf = sorted(data.select_dtypes(include=['object']).columns.tolist()) container3 = st.container(border=True) if not coldf or data.shape[0] < 2: container3.subheader('❌ Topic Modeling', divider='red', anchor=False) container3.write("Unfortunately, you don't have a column containing object in your data. Please check again.") else: container3.subheader('✔️ Topic Modeling', divider='blue', anchor=False) container3.write('Congratulations! You can use Topic Modeling') #===Burst=== container4 = st.container(border=True) if not coldf or 'Year' not in data.columns: container4.subheader('❌ Burst Detection', divider='red', anchor=False) container4.write("Unfortunately, you don't have a column containing object in your data or a 'Year' column. Please check again.") else: container4.subheader('✔️ Burst Detection', divider='blue', anchor=False) container4.write('Congratulations! You can use Burst Detection') with col3: #===bidirected=== container5 = st.container(border=True) if not keycheck: container5.subheader('❌ Bidirected Network', divider='red', anchor=False) container5.write("Unfortunately, you don't have a column containing keywords in your data. Please check again. If you want to use it in another column, please rename it to 'Keywords'.") else: container5.subheader('✔️ Bidirected Network', divider='blue', anchor=False) container5.write('Congratulations! You can use Bidirected Network') #===scattertext=== container6 = st.container(border=True) if not coldf or data.shape[0] < 2: container6.subheader('❌ Scattertext', divider='red', anchor=False) container6.write("Unfortunately, you don't have a column containing object in your data. Please check again.") else: container6.subheader('✔️ Scattertext', divider='blue', anchor=False) container6.write('Congratulations! You can use Scattertext')