Spaces:
Running
Running
Fixed merge conflicts
Browse files- README.md +2 -2
- pages/2 Topic Modeling.py +677 -0
- requirements.txt +4 -0
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: Coconut
|
3 |
emoji: 🥥
|
4 |
colorFrom: red
|
5 |
colorTo: blue
|
@@ -8,5 +8,5 @@ sdk_version: 1.35.0
|
|
8 |
app_file: Home.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
-
|
12 |
---
|
|
|
1 |
---
|
2 |
+
title: Coconut Libtool Test
|
3 |
emoji: 🥥
|
4 |
colorFrom: red
|
5 |
colorTo: blue
|
|
|
8 |
app_file: Home.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
+
short_description: t
|
12 |
---
|
pages/2 Topic Modeling.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
#import module
|
2 |
import streamlit as st
|
3 |
import streamlit.components.v1 as components
|
@@ -671,3 +672,679 @@ if uploaded_file is not None:
|
|
671 |
except:
|
672 |
st.error("Please ensure that your file is correct. Please contact us if you find that this is an error.", icon="🚨")
|
673 |
st.stop()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<<<<<<< HEAD
|
2 |
#import module
|
3 |
import streamlit as st
|
4 |
import streamlit.components.v1 as components
|
|
|
672 |
except:
|
673 |
st.error("Please ensure that your file is correct. Please contact us if you find that this is an error.", icon="🚨")
|
674 |
st.stop()
|
675 |
+
=======
|
676 |
+
#import module
|
677 |
+
import streamlit as st
|
678 |
+
import streamlit.components.v1 as components
|
679 |
+
import pandas as pd
|
680 |
+
import numpy as np
|
681 |
+
import re
|
682 |
+
import string
|
683 |
+
import nltk
|
684 |
+
nltk.download('wordnet')
|
685 |
+
from nltk.stem import WordNetLemmatizer
|
686 |
+
nltk.download('stopwords')
|
687 |
+
from nltk.corpus import stopwords
|
688 |
+
import gensim
|
689 |
+
import gensim.corpora as corpora
|
690 |
+
from gensim.corpora import Dictionary
|
691 |
+
from gensim.models.coherencemodel import CoherenceModel
|
692 |
+
from gensim.models.ldamodel import LdaModel
|
693 |
+
from gensim.models import Phrases
|
694 |
+
from gensim.models.phrases import Phraser
|
695 |
+
from pprint import pprint
|
696 |
+
import pickle
|
697 |
+
import pyLDAvis
|
698 |
+
import pyLDAvis.gensim_models as gensimvis
|
699 |
+
from io import StringIO
|
700 |
+
from ipywidgets.embed import embed_minimal_html
|
701 |
+
from nltk.stem.snowball import SnowballStemmer
|
702 |
+
from bertopic import BERTopic
|
703 |
+
from bertopic.representation import KeyBERTInspired, MaximalMarginalRelevance, OpenAI, TextGeneration
|
704 |
+
import plotly.express as px
|
705 |
+
from sklearn.cluster import KMeans
|
706 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
707 |
+
import bitermplus as btm
|
708 |
+
import tmplot as tmp
|
709 |
+
import tomotopy
|
710 |
+
import sys
|
711 |
+
import spacy
|
712 |
+
import en_core_web_sm
|
713 |
+
import pipeline
|
714 |
+
from html2image import Html2Image
|
715 |
+
from umap import UMAP
|
716 |
+
import os
|
717 |
+
import time
|
718 |
+
import json
|
719 |
+
from tools import sourceformat as sf
|
720 |
+
import datamapplot
|
721 |
+
from sentence_transformers import SentenceTransformer
|
722 |
+
import openai
|
723 |
+
from transformers import pipeline
|
724 |
+
|
725 |
+
#===config===
|
726 |
+
st.set_page_config(
|
727 |
+
page_title="Coconut",
|
728 |
+
page_icon="🥥",
|
729 |
+
layout="wide",
|
730 |
+
initial_sidebar_state="collapsed"
|
731 |
+
)
|
732 |
+
|
733 |
+
hide_streamlit_style = """
|
734 |
+
<style>
|
735 |
+
#MainMenu
|
736 |
+
{visibility: hidden;}
|
737 |
+
footer {visibility: hidden;}
|
738 |
+
[data-testid="collapsedControl"] {display: none}
|
739 |
+
</style>
|
740 |
+
"""
|
741 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
742 |
+
|
743 |
+
with st.popover("🔗 Menu"):
|
744 |
+
st.page_link("https://www.coconut-libtool.com/", label="Home", icon="🏠")
|
745 |
+
st.page_link("pages/1 Scattertext.py", label="Scattertext", icon="1️⃣")
|
746 |
+
st.page_link("pages/2 Topic Modeling.py", label="Topic Modeling", icon="2️⃣")
|
747 |
+
st.page_link("pages/3 Bidirected Network.py", label="Bidirected Network", icon="3️⃣")
|
748 |
+
st.page_link("pages/4 Sunburst.py", label="Sunburst", icon="4️⃣")
|
749 |
+
st.page_link("pages/5 Burst Detection.py", label="Burst Detection", icon="5️⃣")
|
750 |
+
st.page_link("pages/6 Keywords Stem.py", label="Keywords Stem", icon="6️⃣")
|
751 |
+
st.page_link("pages/7 Sentiment Analysis.py", label="Sentiment Analysis", icon="7️⃣")
|
752 |
+
|
753 |
+
st.header("Topic Modeling", anchor=False)
|
754 |
+
st.subheader('Put your file here...', anchor=False)
|
755 |
+
|
756 |
+
#========unique id========
|
757 |
+
@st.cache_resource(ttl=3600)
|
758 |
+
def create_list():
|
759 |
+
l = [1, 2, 3]
|
760 |
+
return l
|
761 |
+
|
762 |
+
l = create_list()
|
763 |
+
first_list_value = l[0]
|
764 |
+
l[0] = first_list_value + 1
|
765 |
+
uID = str(l[0])
|
766 |
+
|
767 |
+
@st.cache_data(ttl=3600)
|
768 |
+
def get_ext(uploaded_file):
|
769 |
+
extype = uID+uploaded_file.name
|
770 |
+
return extype
|
771 |
+
|
772 |
+
#===clear cache===
|
773 |
+
|
774 |
+
def reset_biterm():
|
775 |
+
try:
|
776 |
+
biterm_map.clear()
|
777 |
+
biterm_bar.clear()
|
778 |
+
except NameError:
|
779 |
+
biterm_topic.clear()
|
780 |
+
|
781 |
+
def reset_all():
|
782 |
+
st.cache_data.clear()
|
783 |
+
|
784 |
+
#===avoiding deadlock===
|
785 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
786 |
+
|
787 |
+
#===upload file===
|
788 |
+
@st.cache_data(ttl=3600)
|
789 |
+
def upload(file):
|
790 |
+
papers = pd.read_csv(uploaded_file)
|
791 |
+
if "About the data" in papers.columns[0]:
|
792 |
+
papers = sf.dim(papers)
|
793 |
+
col_dict = {'MeSH terms': 'Keywords',
|
794 |
+
'PubYear': 'Year',
|
795 |
+
'Times cited': 'Cited by',
|
796 |
+
'Publication Type': 'Document Type'
|
797 |
+
}
|
798 |
+
papers.rename(columns=col_dict, inplace=True)
|
799 |
+
|
800 |
+
return papers
|
801 |
+
|
802 |
+
@st.cache_data(ttl=3600)
|
803 |
+
def conv_txt(extype):
|
804 |
+
if("PMID" in (uploaded_file.read()).decode()):
|
805 |
+
uploaded_file.seek(0)
|
806 |
+
papers = sf.medline(uploaded_file)
|
807 |
+
print(papers)
|
808 |
+
return papers
|
809 |
+
col_dict = {'TI': 'Title',
|
810 |
+
'SO': 'Source title',
|
811 |
+
'DE': 'Author Keywords',
|
812 |
+
'DT': 'Document Type',
|
813 |
+
'AB': 'Abstract',
|
814 |
+
'TC': 'Cited by',
|
815 |
+
'PY': 'Year',
|
816 |
+
'ID': 'Keywords Plus',
|
817 |
+
'rights_date_used': 'Year'}
|
818 |
+
uploaded_file.seek(0)
|
819 |
+
papers = pd.read_csv(uploaded_file, sep='\t')
|
820 |
+
if("htid" in papers.columns):
|
821 |
+
papers = sf.htrc(papers)
|
822 |
+
papers.rename(columns=col_dict, inplace=True)
|
823 |
+
print(papers)
|
824 |
+
return papers
|
825 |
+
|
826 |
+
|
827 |
+
@st.cache_data(ttl=3600)
|
828 |
+
def conv_json(extype):
|
829 |
+
col_dict={'title': 'title',
|
830 |
+
'rights_date_used': 'Year',
|
831 |
+
}
|
832 |
+
|
833 |
+
data = json.load(uploaded_file)
|
834 |
+
hathifile = data['gathers']
|
835 |
+
keywords = pd.DataFrame.from_records(hathifile)
|
836 |
+
|
837 |
+
keywords = sf.htrc(keywords)
|
838 |
+
keywords.rename(columns=col_dict,inplace=True)
|
839 |
+
return keywords
|
840 |
+
|
841 |
+
@st.cache_resource(ttl=3600)
|
842 |
+
def conv_pub(extype):
|
843 |
+
if (get_ext(extype)).endswith('.tar.gz'):
|
844 |
+
bytedata = extype.read()
|
845 |
+
keywords = sf.readPub(bytedata)
|
846 |
+
elif (get_ext(extype)).endswith('.xml'):
|
847 |
+
bytedata = extype.read()
|
848 |
+
keywords = sf.readxml(bytedata)
|
849 |
+
return keywords
|
850 |
+
|
851 |
+
#===Read data===
|
852 |
+
uploaded_file = st.file_uploader('', type=['csv', 'txt','json','tar.gz','xml'], on_change=reset_all)
|
853 |
+
|
854 |
+
if uploaded_file is not None:
|
855 |
+
try:
|
856 |
+
extype = get_ext(uploaded_file)
|
857 |
+
|
858 |
+
if extype.endswith('.csv'):
|
859 |
+
papers = upload(extype)
|
860 |
+
elif extype.endswith('.txt'):
|
861 |
+
papers = conv_txt(extype)
|
862 |
+
|
863 |
+
elif extype.endswith('.json'):
|
864 |
+
papers = conv_json(extype)
|
865 |
+
elif extype.endswith('.tar.gz') or extype.endswith('.xml'):
|
866 |
+
papers = conv_pub(uploaded_file)
|
867 |
+
|
868 |
+
coldf = sorted(papers.select_dtypes(include=['object']).columns.tolist())
|
869 |
+
|
870 |
+
c1, c2, c3 = st.columns([3,3,4])
|
871 |
+
method = c1.selectbox(
|
872 |
+
'Choose method',
|
873 |
+
('Choose...', 'pyLDA', 'Biterm', 'BERTopic'))
|
874 |
+
ColCho = c2.selectbox('Choose column', (["Title","Abstract"]))
|
875 |
+
num_cho = c3.number_input('Choose number of topics', min_value=2, max_value=30, value=5)
|
876 |
+
|
877 |
+
d1, d2 = st.columns([3,7])
|
878 |
+
xgram = d1.selectbox("N-grams", ("1", "2", "3"))
|
879 |
+
xgram = int(xgram)
|
880 |
+
words_to_remove = d2.text_input("Remove specific words. Separate words by semicolons (;)")
|
881 |
+
|
882 |
+
rem_copyright = d1.toggle('Remove copyright statement', value=True)
|
883 |
+
rem_punc = d2.toggle('Remove punctuation', value=True)
|
884 |
+
|
885 |
+
#===advance settings===
|
886 |
+
with st.expander("🧮 Show advance settings"):
|
887 |
+
t1, t2, t3 = st.columns([3,3,4])
|
888 |
+
if method == 'pyLDA':
|
889 |
+
py_random_state = t1.number_input('Random state', min_value=0, max_value=None, step=1)
|
890 |
+
py_chunksize = t2.number_input('Chunk size', value=100 , min_value=10, max_value=None, step=1)
|
891 |
+
opt_threshold = t3.number_input('Threshold', value=100 , min_value=1, max_value=None, step=1)
|
892 |
+
|
893 |
+
elif method == 'Biterm':
|
894 |
+
btm_seed = t1.number_input('Random state seed', value=100 , min_value=1, max_value=None, step=1)
|
895 |
+
btm_iterations = t2.number_input('Iterations number', value=20 , min_value=2, max_value=None, step=1)
|
896 |
+
opt_threshold = t3.number_input('Threshold', value=100 , min_value=1, max_value=None, step=1)
|
897 |
+
|
898 |
+
elif method == 'BERTopic':
|
899 |
+
u1, u2 = st.columns([5,5])
|
900 |
+
|
901 |
+
bert_top_n_words = u1.number_input('top_n_words', value=5 , min_value=5, max_value=25, step=1)
|
902 |
+
bert_random_state = u2.number_input('random_state', value=42 , min_value=1, max_value=None, step=1)
|
903 |
+
bert_n_components = u1.number_input('n_components', value=5 , min_value=1, max_value=None, step=1)
|
904 |
+
bert_n_neighbors = u2.number_input('n_neighbors', value=15 , min_value=1, max_value=None, step=1)
|
905 |
+
bert_embedding_model = st.radio(
|
906 |
+
"embedding_model",
|
907 |
+
["all-MiniLM-L6-v2", "paraphrase-multilingual-MiniLM-L12-v2", "en_core_web_sm"], index=0, horizontal=True)
|
908 |
+
|
909 |
+
fine_tuning = st.toggle("Use Fine-tuning")
|
910 |
+
if fine_tuning:
|
911 |
+
topic_labelling = st.toggle("Automatic topic labelling")
|
912 |
+
if topic_labelling:
|
913 |
+
llm_model = st.selectbox("Model",["OpenAI/gpt-4o","Google/Flan-t5","OpenAI/gpt-oss"])
|
914 |
+
if llm_model == "OpenAI/gpt-4o":
|
915 |
+
api_key = st.text_input("API Key")
|
916 |
+
|
917 |
+
else:
|
918 |
+
st.write('Please choose your preferred method')
|
919 |
+
|
920 |
+
#===clean csv===
|
921 |
+
@st.cache_data(ttl=3600, show_spinner=False)
|
922 |
+
def clean_csv(extype):
|
923 |
+
paper = papers.dropna(subset=[ColCho])
|
924 |
+
|
925 |
+
#===mapping===
|
926 |
+
paper['Abstract_pre'] = paper[ColCho].map(lambda x: x.lower())
|
927 |
+
if rem_punc:
|
928 |
+
paper['Abstract_pre'] = paper['Abstract_pre'].map(
|
929 |
+
lambda x: re.sub(f"[{re.escape(string.punctuation)}]", " ", x)
|
930 |
+
).map(lambda x: re.sub(r"\s+", " ", x).strip())
|
931 |
+
paper['Abstract_pre'] = paper['Abstract_pre'].str.replace('[\u2018\u2019\u201c\u201d]', '', regex=True)
|
932 |
+
if rem_copyright:
|
933 |
+
paper['Abstract_pre'] = paper['Abstract_pre'].map(lambda x: re.sub('©.*', '', x))
|
934 |
+
|
935 |
+
#===stopword removal===
|
936 |
+
stop = stopwords.words('english')
|
937 |
+
paper['Abstract_stop'] = paper['Abstract_pre'].apply(lambda x: ' '.join([word for word in x.split() if word not in (stop)]))
|
938 |
+
|
939 |
+
#===lemmatize===
|
940 |
+
lemmatizer = WordNetLemmatizer()
|
941 |
+
|
942 |
+
@st.cache_resource(ttl=3600)
|
943 |
+
def lemmatize_words(text):
|
944 |
+
words = text.split()
|
945 |
+
words = [lemmatizer.lemmatize(word) for word in words]
|
946 |
+
return ' '.join(words)
|
947 |
+
paper['Abstract_lem'] = paper['Abstract_stop'].apply(lemmatize_words)
|
948 |
+
|
949 |
+
words_rmv = [word.strip() for word in words_to_remove.split(";")]
|
950 |
+
remove_dict = {word: None for word in words_rmv}
|
951 |
+
|
952 |
+
@st.cache_resource(ttl=3600)
|
953 |
+
def remove_words(text):
|
954 |
+
words = text.split()
|
955 |
+
cleaned_words = [word for word in words if word not in remove_dict]
|
956 |
+
return ' '.join(cleaned_words)
|
957 |
+
paper['Abstract_lem'] = paper['Abstract_lem'].map(remove_words)
|
958 |
+
|
959 |
+
topic_abs = paper.Abstract_lem.values.tolist()
|
960 |
+
return topic_abs, paper
|
961 |
+
|
962 |
+
topic_abs, paper=clean_csv(extype)
|
963 |
+
|
964 |
+
if st.button("Submit", on_click=reset_all):
|
965 |
+
num_topic = num_cho
|
966 |
+
|
967 |
+
if method == 'BERTopic':
|
968 |
+
st.info('BERTopic is an expensive process when dealing with a large volume of text with our existing resources. Please kindly wait until the visualization appears.', icon="ℹ️")
|
969 |
+
|
970 |
+
#===topic===
|
971 |
+
if method == 'Choose...':
|
972 |
+
st.write('')
|
973 |
+
|
974 |
+
elif method == 'pyLDA':
|
975 |
+
tab1, tab2, tab3, tab4 = st.tabs(["📈 Generate visualization", "📃 Reference", "📓 Recommended Reading", "⬇️ Download Help"])
|
976 |
+
|
977 |
+
with tab1:
|
978 |
+
#===visualization===
|
979 |
+
@st.cache_data(ttl=3600, show_spinner=False)
|
980 |
+
def pylda(extype):
|
981 |
+
topic_abs_LDA = [t.split(' ') for t in topic_abs]
|
982 |
+
|
983 |
+
bigram = Phrases(topic_abs_LDA, min_count=xgram, threshold=opt_threshold)
|
984 |
+
trigram = Phrases(bigram[topic_abs_LDA], threshold=opt_threshold)
|
985 |
+
bigram_mod = Phraser(bigram)
|
986 |
+
trigram_mod = Phraser(trigram)
|
987 |
+
|
988 |
+
topic_abs_LDA = [trigram_mod[bigram_mod[doc]] for doc in topic_abs_LDA]
|
989 |
+
|
990 |
+
id2word = Dictionary(topic_abs_LDA)
|
991 |
+
corpus = [id2word.doc2bow(text) for text in topic_abs_LDA]
|
992 |
+
#===LDA===
|
993 |
+
lda_model = LdaModel(corpus=corpus,
|
994 |
+
id2word=id2word,
|
995 |
+
num_topics=num_topic,
|
996 |
+
random_state=py_random_state,
|
997 |
+
chunksize=py_chunksize,
|
998 |
+
alpha='auto',
|
999 |
+
per_word_topics=False)
|
1000 |
+
pprint(lda_model.print_topics())
|
1001 |
+
doc_lda = lda_model[corpus]
|
1002 |
+
topics = lda_model.show_topics(num_words = 30,formatted=False)
|
1003 |
+
|
1004 |
+
#===visualization===
|
1005 |
+
coherence_model_lda = CoherenceModel(model=lda_model, texts=topic_abs_LDA, dictionary=id2word, coherence='c_v')
|
1006 |
+
coherence_lda = coherence_model_lda.get_coherence()
|
1007 |
+
vis = pyLDAvis.gensim_models.prepare(lda_model, corpus, id2word)
|
1008 |
+
py_lda_vis_html = pyLDAvis.prepared_data_to_html(vis)
|
1009 |
+
return py_lda_vis_html, coherence_lda, vis, topics
|
1010 |
+
|
1011 |
+
with st.spinner('Performing computations. Please wait ...'):
|
1012 |
+
try:
|
1013 |
+
py_lda_vis_html, coherence_lda, vis, topics = pylda(extype)
|
1014 |
+
st.write('Coherence score: ', coherence_lda)
|
1015 |
+
components.html(py_lda_vis_html, width=1500, height=800)
|
1016 |
+
st.markdown('Copyright (c) 2015, Ben Mabey. https://github.com/bmabey/pyLDAvis')
|
1017 |
+
|
1018 |
+
@st.cache_data(ttl=3600, show_spinner=False)
|
1019 |
+
def img_lda(vis):
|
1020 |
+
pyLDAvis.save_html(vis, 'output.html')
|
1021 |
+
hti = Html2Image()
|
1022 |
+
hti.browser.flags = ['--default-background-color=ffffff', '--hide-scrollbars']
|
1023 |
+
hti.browser.use_new_headless = None
|
1024 |
+
css = "body {background: white;}"
|
1025 |
+
hti.screenshot(
|
1026 |
+
other_file='output.html', css_str=css, size=(1500, 800),
|
1027 |
+
save_as='ldavis_img.png'
|
1028 |
+
)
|
1029 |
+
|
1030 |
+
img_lda(vis)
|
1031 |
+
|
1032 |
+
d1, d2 = st.columns(2)
|
1033 |
+
with open("ldavis_img.png", "rb") as file:
|
1034 |
+
btn = d1.download_button(
|
1035 |
+
label="Download image",
|
1036 |
+
data=file,
|
1037 |
+
file_name="ldavis_img.png",
|
1038 |
+
mime="image/png"
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
#===download results===#
|
1042 |
+
resultf = pd.DataFrame(topics)
|
1043 |
+
#formatting
|
1044 |
+
resultf = resultf.transpose()
|
1045 |
+
resultf = resultf.drop([0])
|
1046 |
+
resultf = resultf.explode(list(range(len(resultf.columns))), ignore_index=False)
|
1047 |
+
|
1048 |
+
resultcsv = resultf.to_csv().encode("utf-8")
|
1049 |
+
d2.download_button(
|
1050 |
+
label = "Download Results",
|
1051 |
+
data=resultcsv,
|
1052 |
+
file_name="results.csv",
|
1053 |
+
mime="text\csv",
|
1054 |
+
on_click="ignore")
|
1055 |
+
|
1056 |
+
except NameError as f:
|
1057 |
+
st.warning('🖱️ Please click Submit')
|
1058 |
+
|
1059 |
+
with tab2:
|
1060 |
+
st.markdown('**Sievert, C., & Shirley, K. (2014). LDAvis: A method for visualizing and interpreting topics. Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces.** https://doi.org/10.3115/v1/w14-3110')
|
1061 |
+
|
1062 |
+
with tab3:
|
1063 |
+
st.markdown('**Chen, X., & Wang, H. (2019, January). Automated chat transcript analysis using topic modeling for library reference services. Proceedings of the Association for Information Science and Technology, 56(1), 368–371.** https://doi.org/10.1002/pra2.31')
|
1064 |
+
st.markdown('**Joo, S., Ingram, E., & Cahill, M. (2021, December 15). Exploring Topics and Genres in Storytime Books: A Text Mining Approach. Evidence Based Library and Information Practice, 16(4), 41–62.** https://doi.org/10.18438/eblip29963')
|
1065 |
+
st.markdown('**Lamba, M., & Madhusudhan, M. (2021, July 31). Topic Modeling. Text Mining for Information Professionals, 105–137.** https://doi.org/10.1007/978-3-030-85085-2_4')
|
1066 |
+
st.markdown('**Lamba, M., & Madhusudhan, M. (2019, June 7). Mapping of topics in DESIDOC Journal of Library and Information Technology, India: a study. Scientometrics, 120(2), 477–505.** https://doi.org/10.1007/s11192-019-03137-5')
|
1067 |
+
|
1068 |
+
with tab4:
|
1069 |
+
st.subheader(':blue[pyLDA]', anchor=False)
|
1070 |
+
st.button('Download image')
|
1071 |
+
st.text("Click Download Image button.")
|
1072 |
+
st.divider()
|
1073 |
+
st.subheader(':blue[Downloading CSV Results]', anchor=False)
|
1074 |
+
st.button("Download Results")
|
1075 |
+
st.text("Click Download results button at bottom of page")
|
1076 |
+
|
1077 |
+
#===Biterm===
|
1078 |
+
elif method == 'Biterm':
|
1079 |
+
|
1080 |
+
#===optimize Biterm===
|
1081 |
+
@st.cache_data(ttl=3600, show_spinner=False)
|
1082 |
+
def biterm_topic(extype):
|
1083 |
+
tokenized_abs = [t.split(' ') for t in topic_abs]
|
1084 |
+
|
1085 |
+
bigram = Phrases(tokenized_abs, min_count=xgram, threshold=opt_threshold)
|
1086 |
+
trigram = Phrases(bigram[tokenized_abs], threshold=opt_threshold)
|
1087 |
+
bigram_mod = Phraser(bigram)
|
1088 |
+
trigram_mod = Phraser(trigram)
|
1089 |
+
|
1090 |
+
topic_abs_ngram = [trigram_mod[bigram_mod[doc]] for doc in tokenized_abs]
|
1091 |
+
|
1092 |
+
topic_abs_str = [' '.join(doc) for doc in topic_abs_ngram]
|
1093 |
+
|
1094 |
+
|
1095 |
+
X, vocabulary, vocab_dict = btm.get_words_freqs(topic_abs_str)
|
1096 |
+
tf = np.array(X.sum(axis=0)).ravel()
|
1097 |
+
docs_vec = btm.get_vectorized_docs(topic_abs, vocabulary)
|
1098 |
+
docs_lens = list(map(len, docs_vec))
|
1099 |
+
biterms = btm.get_biterms(docs_vec)
|
1100 |
+
|
1101 |
+
model = btm.BTM(X, vocabulary, seed=btm_seed, T=num_topic, M=20, alpha=50/8, beta=0.01)
|
1102 |
+
model.fit(biterms, iterations=btm_iterations)
|
1103 |
+
|
1104 |
+
p_zd = model.transform(docs_vec)
|
1105 |
+
coherence = model.coherence_
|
1106 |
+
phi = tmp.get_phi(model)
|
1107 |
+
topics_coords = tmp.prepare_coords(model)
|
1108 |
+
totaltop = topics_coords.label.values.tolist()
|
1109 |
+
perplexity = model.perplexity_
|
1110 |
+
top_topics = model.df_words_topics_
|
1111 |
+
|
1112 |
+
return topics_coords, phi, totaltop, perplexity, top_topics
|
1113 |
+
|
1114 |
+
tab1, tab2, tab3, tab4 = st.tabs(["📈 Generate visualization", "📃 Reference", "📓 Recommended Reading", "⬇️ Download Help"])
|
1115 |
+
with tab1:
|
1116 |
+
try:
|
1117 |
+
with st.spinner('Performing computations. Please wait ...'):
|
1118 |
+
topics_coords, phi, totaltop, perplexity, top_topics = biterm_topic(extype)
|
1119 |
+
col1, col2 = st.columns([4,6])
|
1120 |
+
|
1121 |
+
@st.cache_data(ttl=3600)
|
1122 |
+
def biterm_map(extype):
|
1123 |
+
btmvis_coords = tmp.plot_scatter_topics(topics_coords, size_col='size', label_col='label', topic=numvis)
|
1124 |
+
return btmvis_coords
|
1125 |
+
|
1126 |
+
@st.cache_data(ttl=3600)
|
1127 |
+
def biterm_bar(extype):
|
1128 |
+
terms_probs = tmp.calc_terms_probs_ratio(phi, topic=numvis, lambda_=1)
|
1129 |
+
btmvis_probs = tmp.plot_terms(terms_probs, font_size=12)
|
1130 |
+
return btmvis_probs
|
1131 |
+
|
1132 |
+
with col1:
|
1133 |
+
st.write('Perplexity score: ', perplexity)
|
1134 |
+
st.write('')
|
1135 |
+
numvis = st.selectbox(
|
1136 |
+
'Choose topic',
|
1137 |
+
(totaltop), on_change=reset_biterm)
|
1138 |
+
btmvis_coords = biterm_map(extype)
|
1139 |
+
st.altair_chart(btmvis_coords)
|
1140 |
+
with col2:
|
1141 |
+
btmvis_probs = biterm_bar(extype)
|
1142 |
+
st.altair_chart(btmvis_probs, use_container_width=True)
|
1143 |
+
|
1144 |
+
#===download results===#
|
1145 |
+
resultcsv = top_topics.to_csv().encode("utf-8")
|
1146 |
+
st.download_button(label = "Download Results", data=resultcsv, file_name="results.csv", mime="text\csv", on_click="ignore")
|
1147 |
+
|
1148 |
+
except ValueError as g:
|
1149 |
+
st.error('🙇♂️ Please raise the number of topics and click submit')
|
1150 |
+
|
1151 |
+
except NameError as f:
|
1152 |
+
st.warning('🖱️ Please click Submit')
|
1153 |
+
|
1154 |
+
with tab2:
|
1155 |
+
st.markdown('**Yan, X., Guo, J., Lan, Y., & Cheng, X. (2013, May 13). A biterm topic model for short texts. Proceedings of the 22nd International Conference on World Wide Web.** https://doi.org/10.1145/2488388.2488514')
|
1156 |
+
with tab3:
|
1157 |
+
st.markdown('**Cai, M., Shah, N., Li, J., Chen, W. H., Cuomo, R. E., Obradovich, N., & Mackey, T. K. (2020, August 26). Identification and characterization of tweets related to the 2015 Indiana HIV outbreak: A retrospective infoveillance study. PLOS ONE, 15(8), e0235150.** https://doi.org/10.1371/journal.pone.0235150')
|
1158 |
+
st.markdown('**Chen, Y., Dong, T., Ban, Q., & Li, Y. (2021). What Concerns Consumers about Hypertension? A Comparison between the Online Health Community and the Q&A Forum. International Journal of Computational Intelligence Systems, 14(1), 734.** https://doi.org/10.2991/ijcis.d.210203.002')
|
1159 |
+
st.markdown('**George, Crissandra J., "AMBIGUOUS APPALACHIANNESS: A LINGUISTIC AND PERCEPTUAL INVESTIGATION INTO ARC-LABELED PENNSYLVANIA COUNTIES" (2022). Theses and Dissertations-- Linguistics. 48.** https://doi.org/10.13023/etd.2022.217')
|
1160 |
+
st.markdown('**Li, J., Chen, W. H., Xu, Q., Shah, N., Kohler, J. C., & Mackey, T. K. (2020). Detection of self-reported experiences with corruption on twitter using unsupervised machine learning. Social Sciences & Humanities Open, 2(1), 100060.** https://doi.org/10.1016/j.ssaho.2020.100060')
|
1161 |
+
with tab4:
|
1162 |
+
st.subheader(':blue[Biterm]', anchor=False)
|
1163 |
+
st.text("Click the three dots at the top right then select the desired format.")
|
1164 |
+
st.markdown("")
|
1165 |
+
st.divider()
|
1166 |
+
st.subheader(':blue[Downloading CSV Results]', anchor=False)
|
1167 |
+
st.button("Download Results")
|
1168 |
+
st.text("Click Download results button at bottom of page")
|
1169 |
+
|
1170 |
+
|
1171 |
+
#===BERTopic===
|
1172 |
+
elif method == 'BERTopic':
|
1173 |
+
@st.cache_resource(ttl = 3600, show_spinner=False)
|
1174 |
+
#@st.cache_data(ttl=3600, show_spinner=False)
|
1175 |
+
def bertopic_vis(extype):
|
1176 |
+
umap_model = UMAP(n_neighbors=bert_n_neighbors, n_components=bert_n_components,
|
1177 |
+
min_dist=0.0, metric='cosine', random_state=bert_random_state)
|
1178 |
+
cluster_model = KMeans(n_clusters=num_topic)
|
1179 |
+
if bert_embedding_model == 'all-MiniLM-L6-v2':
|
1180 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
1181 |
+
lang = 'en'
|
1182 |
+
embeddings = model.encode(topic_abs, show_progress_bar=True)
|
1183 |
+
|
1184 |
+
elif bert_embedding_model == 'en_core_web_sm':
|
1185 |
+
nlp = en_core_web_sm.load(exclude=['tagger', 'parser', 'ner', 'attribute_ruler', 'lemmatizer'])
|
1186 |
+
model = nlp
|
1187 |
+
lang = 'en'
|
1188 |
+
embeddings = np.array([nlp(text).vector for text in topic_abs])
|
1189 |
+
|
1190 |
+
elif bert_embedding_model == 'paraphrase-multilingual-MiniLM-L12-v2':
|
1191 |
+
model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')
|
1192 |
+
lang = 'multilingual'
|
1193 |
+
embeddings = model.encode(topic_abs, show_progress_bar=True)
|
1194 |
+
|
1195 |
+
representation_model = ""
|
1196 |
+
|
1197 |
+
if fine_tuning:
|
1198 |
+
keybert = KeyBERTInspired()
|
1199 |
+
mmr = MaximalMarginalRelevance(diversity=0.3)
|
1200 |
+
representation_model = {
|
1201 |
+
"KeyBERT": keybert,
|
1202 |
+
"MMR": mmr,
|
1203 |
+
}
|
1204 |
+
if topic_labelling:
|
1205 |
+
if llm_model == "OpenAI/gpt-4o":
|
1206 |
+
client = openai.OpenAI(api_key=api_key)
|
1207 |
+
representation_model = {
|
1208 |
+
"KeyBERT": keybert,
|
1209 |
+
"MMR": mmr,
|
1210 |
+
"test": OpenAI(client, model = "gpt-4o-mini", delay_in_seconds=10)
|
1211 |
+
}
|
1212 |
+
elif llm_model == "Google/Flan-t5":
|
1213 |
+
gen = pipeline("text2text-generation", model = "google/flan-t5-base")
|
1214 |
+
clientmod = TextGeneration(gen)
|
1215 |
+
representation_model = {
|
1216 |
+
"KeyBERT": keybert,
|
1217 |
+
"MMR": mmr,
|
1218 |
+
"test": clientmod
|
1219 |
+
}
|
1220 |
+
elif llm_model == "OpenAI/gpt-oss":
|
1221 |
+
gen = pipeline("text-generation",
|
1222 |
+
model = "unsloth/gpt-oss-20b-BF16",
|
1223 |
+
torch_dtype = "auto",
|
1224 |
+
device_map = "auto",
|
1225 |
+
)
|
1226 |
+
clientmod = TextGeneration(gen)
|
1227 |
+
|
1228 |
+
representation_model = {
|
1229 |
+
"KeyBERT": keybert,
|
1230 |
+
"MMR": mmr,
|
1231 |
+
"test": gen
|
1232 |
+
}
|
1233 |
+
|
1234 |
+
|
1235 |
+
|
1236 |
+
vectorizer_model = CountVectorizer(ngram_range=(1, xgram), stop_words='english')
|
1237 |
+
topic_model = BERTopic(representation_model = representation_model, embedding_model=model, hdbscan_model=cluster_model, language=lang, umap_model=umap_model, vectorizer_model=vectorizer_model, top_n_words=bert_top_n_words)
|
1238 |
+
topics, probs = topic_model.fit_transform(topic_abs, embeddings=embeddings)
|
1239 |
+
|
1240 |
+
if(fine_tuning and topic_labelling):
|
1241 |
+
generated_labels = [label[0][0].split("\n")[0] for label in topic_model.get_topics(full=True)["test"].values()]
|
1242 |
+
topic_model.set_topic_labels(generated_labels)
|
1243 |
+
|
1244 |
+
return topic_model, topics, probs, embeddings
|
1245 |
+
|
1246 |
+
@st.cache_resource(ttl = 3600, show_spinner=False)
|
1247 |
+
def Vis_Topics(extype):
|
1248 |
+
fig1 = topic_model.visualize_topics()
|
1249 |
+
return fig1
|
1250 |
+
@st.cache_resource(ttl = 3600, show_spinner=False)
|
1251 |
+
def Vis_Documents(extype):
|
1252 |
+
fig2 = topic_model.visualize_document_datamap(topic_abs, embeddings=embeddings, custom_labels = True)
|
1253 |
+
return fig2
|
1254 |
+
@st.cache_resource(ttl = 3600, show_spinner=False)
|
1255 |
+
def Vis_Hierarchy(extype):
|
1256 |
+
fig3 = topic_model.visualize_hierarchy(top_n_topics=num_topic, custom_labels = True)
|
1257 |
+
return fig3
|
1258 |
+
@st.cache_resource(ttl = 3600, show_spinner=False)
|
1259 |
+
def Vis_Heatmap(extype):
|
1260 |
+
global topic_model
|
1261 |
+
fig4 = topic_model.visualize_heatmap(n_clusters=num_topic-1, width=1000, height=1000, custom_labels = True)
|
1262 |
+
return fig4
|
1263 |
+
@st.cache_resource(ttl = 3600, show_spinner=False)
|
1264 |
+
def Vis_Barchart(extype):
|
1265 |
+
fig5 = topic_model.visualize_barchart(top_n_topics=num_topic, custom_labels = True)
|
1266 |
+
return fig5
|
1267 |
+
|
1268 |
+
tab1, tab2, tab3, tab4 = st.tabs(["📈 Generate visualization", "📃 Reference", "📓 Recommended Reading", "⬇️ Download Help"])
|
1269 |
+
with tab1:
|
1270 |
+
try:
|
1271 |
+
with st.spinner('Performing computations. Please wait ...'):
|
1272 |
+
|
1273 |
+
topic_model, topics, probs, embeddings = bertopic_vis(extype)
|
1274 |
+
time.sleep(.5)
|
1275 |
+
st.toast('Visualize Topics', icon='🏃')
|
1276 |
+
fig1 = Vis_Topics(extype)
|
1277 |
+
|
1278 |
+
time.sleep(.5)
|
1279 |
+
st.toast('Visualize Document', icon='🏃')
|
1280 |
+
fig2 = Vis_Documents(extype)
|
1281 |
+
|
1282 |
+
time.sleep(.5)
|
1283 |
+
st.toast('Visualize Document Hierarchy', icon='🏃')
|
1284 |
+
fig3 = Vis_Hierarchy(extype)
|
1285 |
+
|
1286 |
+
time.sleep(.5)
|
1287 |
+
st.toast('Visualize Topic Similarity', icon='🏃')
|
1288 |
+
fig4 = Vis_Heatmap(extype)
|
1289 |
+
|
1290 |
+
time.sleep(.5)
|
1291 |
+
st.toast('Visualize Terms', icon='🏃')
|
1292 |
+
fig5 = Vis_Barchart(extype)
|
1293 |
+
|
1294 |
+
bertab1, bertab2, bertab3, bertab4, bertab5 = st.tabs(["Visualize Topics", "Visualize Terms", "Visualize Documents",
|
1295 |
+
"Visualize Document Hierarchy", "Visualize Topic Similarity"])
|
1296 |
+
|
1297 |
+
with bertab1:
|
1298 |
+
st.plotly_chart(fig1, use_container_width=True)
|
1299 |
+
with bertab2:
|
1300 |
+
st.plotly_chart(fig5, use_container_width=True)
|
1301 |
+
with bertab3:
|
1302 |
+
st.plotly_chart(fig2, use_container_width=True)
|
1303 |
+
with bertab4:
|
1304 |
+
st.plotly_chart(fig3, use_container_width=True)
|
1305 |
+
with bertab5:
|
1306 |
+
st.plotly_chart(fig4, use_container_width=True)
|
1307 |
+
|
1308 |
+
#===download results===#
|
1309 |
+
results = topic_model.get_topic_info()
|
1310 |
+
resultf = pd.DataFrame(results)
|
1311 |
+
resultcsv = resultf.to_csv().encode("utf-8")
|
1312 |
+
st.download_button(
|
1313 |
+
label = "Download Results",
|
1314 |
+
data=resultcsv,
|
1315 |
+
file_name="results.csv",
|
1316 |
+
mime="text\csv",
|
1317 |
+
on_click="ignore",
|
1318 |
+
)
|
1319 |
+
|
1320 |
+
except ValueError as e:
|
1321 |
+
st.write(e)
|
1322 |
+
st.error('🙇♂️ Please raise the number of topics and click submit')
|
1323 |
+
|
1324 |
+
|
1325 |
+
except NameError as e:
|
1326 |
+
st.warning('🖱️ Please click Submit')
|
1327 |
+
st.write(e)
|
1328 |
+
|
1329 |
+
with tab2:
|
1330 |
+
st.markdown('**Grootendorst, M. (2022). BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv preprint arXiv:2203.05794.** https://doi.org/10.48550/arXiv.2203.05794')
|
1331 |
+
|
1332 |
+
with tab3:
|
1333 |
+
st.markdown('**Jeet Rawat, A., Ghildiyal, S., & Dixit, A. K. (2022, December 1). Topic modelling of legal documents using NLP and bidirectional encoder representations from transformers. Indonesian Journal of Electrical Engineering and Computer Science, 28(3), 1749.** https://doi.org/10.11591/ijeecs.v28.i3.pp1749-1755')
|
1334 |
+
st.markdown('**Yao, L. F., Ferawati, K., Liew, K., Wakamiya, S., & Aramaki, E. (2023, April 20). Disruptions in the Cystic Fibrosis Community’s Experiences and Concerns During the COVID-19 Pandemic: Topic Modeling and Time Series Analysis of Reddit Comments. Journal of Medical Internet Research, 25, e45249.** https://doi.org/10.2196/45249')
|
1335 |
+
|
1336 |
+
with tab4:
|
1337 |
+
st.divider()
|
1338 |
+
st.subheader(':blue[BERTopic]', anchor=False)
|
1339 |
+
st.text("Click the camera icon on the top right menu")
|
1340 |
+
st.markdown("")
|
1341 |
+
st.divider()
|
1342 |
+
st.subheader(':blue[Downloading CSV Results]', anchor=False)
|
1343 |
+
st.button("Download Results")
|
1344 |
+
st.text("Click Download results button at bottom of page")
|
1345 |
+
|
1346 |
+
except Exception as e:
|
1347 |
+
st.error("Please ensure that your file is correct. Please contact us if you find that this is an error.", icon="🚨")
|
1348 |
+
st.write(e)
|
1349 |
+
st.stop()
|
1350 |
+
>>>>>>> e52d4a30c18f770eb968980667fa8e5a7b287580
|
requirements.txt
CHANGED
@@ -38,3 +38,7 @@ git+https://github.com/faizhalas/shifterator
|
|
38 |
datamapplot==0.4.2
|
39 |
altair-nx
|
40 |
rouge_score
|
|
|
|
|
|
|
|
|
|
38 |
datamapplot==0.4.2
|
39 |
altair-nx
|
40 |
rouge_score
|
41 |
+
pytextrank
|
42 |
+
openai
|
43 |
+
transformers
|
44 |
+
accelerate
|