LibTesting / pages /4 Sunburst.py
T Le
Update to latest version
13d6d96
raw
history blame
9.22 kB
#===import module===
import streamlit as st
import pandas as pd
import plotly.express as px
import numpy as np
import sys
import json
from tools import sourceformat as sf
#===config===
st.set_page_config(
page_title="Coconut",
page_icon="🥥",
layout="wide",
initial_sidebar_state="collapsed"
)
hide_streamlit_style = """
<style>
#MainMenu
{visibility: hidden;}
footer {visibility: hidden;}
[data-testid="collapsedControl"] {display: none}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
with st.popover("🔗 Menu"):
st.page_link("https://www.coconut-libtool.com/", label="Home", icon="🏠")
st.page_link("pages/1 Scattertext.py", label="Scattertext", icon="1️⃣")
st.page_link("pages/2 Topic Modeling.py", label="Topic Modeling", icon="2️⃣")
st.page_link("pages/3 Bidirected Network.py", label="Bidirected Network", icon="3️⃣")
st.page_link("pages/4 Sunburst.py", label="Sunburst", icon="4️⃣")
st.page_link("pages/5 Burst Detection.py", label="Burst Detection", icon="5️⃣")
st.page_link("pages/6 Keywords Stem.py", label="Keywords Stem", icon="6️⃣")
st.page_link("pages/7 Sentiment Analysis.py", label="Sentiment Analysis", icon="7️⃣")
st.page_link("pages/8 Shifterator.py", label="Shifterator", icon="8️⃣")
st.page_link("pages/9 Summarization.py", label = "Summarization",icon ="9️⃣")
st.page_link("pages/10 WordCloud.py", label = "WordCloud", icon = "🔟")
st.header("Sunburst Visualization", anchor=False)
st.subheader('Put your file here...', anchor=False)
#===clear cache===
def reset_all():
st.cache_data.clear()
#===check type===
@st.cache_data(ttl=3600)
def get_ext(extype):
extype = uploaded_file.name
return extype
@st.cache_data(ttl=3600)
def upload(extype):
papers = pd.read_csv(uploaded_file)
#lens.org
if 'Publication Year' in papers.columns:
papers.rename(columns={'Publication Year': 'Year', 'Citing Works Count': 'Cited by',
'Publication Type': 'Document Type', 'Source Title': 'Source title'}, inplace=True)
if "About the data" in papers.columns[0]:
papers = sf.dim(papers)
col_dict = {'MeSH terms': 'Keywords',
'PubYear': 'Year',
'Times cited': 'Cited by',
'Publication Type': 'Document Type'
}
papers.rename(columns=col_dict, inplace=True)
return papers
@st.cache_data(ttl=3600)
def conv_txt(extype):
if("PMID" in (uploaded_file.read()).decode()):
uploaded_file.seek(0)
papers = sf.medline(uploaded_file)
print(papers)
return papers
col_dict = {'TI': 'Title',
'SO': 'Source title',
'DE': 'Author Keywords',
'DT': 'Document Type',
'AB': 'Abstract',
'TC': 'Cited by',
'PY': 'Year',
'ID': 'Keywords Plus',
'rights_date_used': 'Year'}
uploaded_file.seek(0)
papers = pd.read_csv(uploaded_file, sep='\t')
if("htid" in papers.columns):
papers = sf.htrc(papers)
papers.rename(columns=col_dict, inplace=True)
print(papers)
return papers
@st.cache_data(ttl=3600)
def conv_json(extype):
col_dict={'title': 'title',
'rights_date_used': 'Year',
'content_provider_code': 'Document Type',
'Keywords':'Source title'
}
data = json.load(uploaded_file)
hathifile = data['gathers']
keywords = pd.DataFrame.from_records(hathifile)
keywords = sf.htrc(keywords)
keywords['Cited by'] = keywords.groupby(['Keywords'])['Keywords'].transform('size')
keywords.rename(columns=col_dict,inplace=True)
return keywords
def conv_pub(extype):
if (get_ext(extype)).endswith('.tar.gz'):
bytedata = extype.read()
keywords = sf.readPub(bytedata)
elif (get_ext(extype)).endswith('.xml'):
bytedata = extype.read()
keywords = sf.readxml(bytedata)
keywords['Cited by'] = keywords.groupby(['Keywords'])['Keywords'].transform('size')
st.write(keywords)
return keywords
#===Read data===
uploaded_file = st.file_uploader('', type=['csv', 'txt','json','tar.gz', 'xml'], on_change=reset_all)
if uploaded_file is not None:
try:
extype = get_ext(uploaded_file)
if extype.endswith('.csv'):
papers = upload(extype)
elif extype.endswith('.txt'):
papers = conv_txt(extype)
elif extype.endswith('.json'):
papers = conv_json(extype)
elif extype.endswith('.tar.gz') or extype.endswith('.xml'):
papers = conv_pub(uploaded_file)
@st.cache_data(ttl=3600)
def get_minmax(extype):
extype = extype
MIN = int(papers['Year'].min())
MAX = int(papers['Year'].max())
MIN1 = int(papers['Cited by'].min())
MAX1 = int(papers['Cited by'].max())
GAP = MAX - MIN
return papers, MIN, MAX, GAP, MIN1, MAX1
tab1, tab2, tab3 = st.tabs(["📈 Generate visualization", "📓 Recommended Reading", "⬇️ Download Help"])
with tab1:
#===sunburst===
try:
papers, MIN, MAX, GAP, MIN1, MAX1 = get_minmax(extype)
except KeyError:
st.error('Error: Please check again your columns.')
sys.exit(1)
if (GAP != 0):
YEAR = st.slider('Year', min_value=MIN, max_value=MAX, value=(MIN, MAX), on_change=reset_all)
KEYLIM = st.slider('Cited By Count',min_value = MIN1, max_value = MAX1, value = (MIN1,MAX1), on_change=reset_all)
with st.expander("Filtering setings"):
invert_keys = st.toggle("Invert keys", on_change=reset_all)
filtered_keys = st.text_input("Filter words in source, seperate with semicolon (;)", value = "", on_change = reset_all)
keylist = filtered_keys.split(";")
select_col = st.selectbox("Column to filter from", (list(papers)))
else:
st.write('You only have data in ', (MAX))
YEAR = (MIN, MAX)
KEYLIM = (MIN1,MAX1)
@st.cache_data(ttl=3600)
def listyear(extype):
global papers
years = list(range(YEAR[0],YEAR[1]+1))
cited = list(range(KEYLIM[0],KEYLIM[1]+1))
papers = papers.loc[papers['Year'].isin(years)]
papers = papers.loc[papers['Cited by'].isin(cited)]
return years, papers
@st.cache_data(ttl=3600)
def vis_sunbrust(extype):
data = papers.copy()
data['Cited by'] = data['Cited by'].fillna(0)
#filtering
if(invert_keys):
data = data[data[select_col].isin(keylist)]
else:
data = data[~data[select_col].isin(keylist)]
vis = pd.DataFrame()
vis[['doctype','source','citby','year']] = data[['Document Type','Source title','Cited by','Year']]
viz=vis.groupby(['doctype', 'source', 'year'])['citby'].agg(['sum','count']).reset_index()
viz.rename(columns={'sum': 'cited by', 'count': 'total docs'}, inplace=True)
fig = px.sunburst(viz, path=['doctype', 'source', 'year'], values='total docs',
color='cited by',
color_continuous_scale='RdBu',
color_continuous_midpoint=np.average(viz['cited by'], weights=viz['total docs']))
fig.update_layout(height=800, width=1200)
return fig, viz
years, papers = listyear(extype)
if {'Document Type','Source title','Cited by','Year'}.issubset(papers.columns):
if st.button("Submit"):
fig, viz = vis_sunbrust(extype)
st.plotly_chart(fig, height=800, width=1200) #use_container_width=True)
st.dataframe(viz)
else:
st.error('We require these columns: Document Type, Source title, Cited by, Year', icon="🚨")
with tab2:
st.markdown('**numpy.average — NumPy v1.24 Manual. (n.d.). Numpy.Average — NumPy v1.24 Manual.** https://numpy.org/doc/stable/reference/generated/numpy.average.html')
st.markdown('**Sunburst. (n.d.). Sunburst Charts in Python.** https://plotly.com/python/sunburst-charts/')
with tab3:
st.text("Click the camera icon on the top right menu (you may need to hover your cursor within the visualization)")
st.markdown("![Downloading visualization](https://raw.githubusercontent.com/faizhalas/library-tools/main/images/download_bertopic.jpg)")
except:
st.error("Please ensure that your file is correct. Please contact us if you find that this is an error.", icon="🚨")
st.stop()