Spaces:
Running
Running
File size: 13,451 Bytes
c837e02 13d6d96 c837e02 13d6d96 c837e02 13d6d96 c837e02 13d6d96 c837e02 13d6d96 c837e02 13d6d96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import streamlit as st
import streamlit.components.v1 as components
import nltk
import spacy
import pytextrank
import pandas as pd
from rouge_score import rouge_scorer
from nltk.translate.bleu_score import sentence_bleu
from transformers import pipeline, PegasusForConditionalGeneration, PegasusTokenizer, T5ForConditionalGeneration, T5Tokenizer
nltk.download('punkt')
#===config===
st.set_page_config(
page_title="Coconut",
page_icon="🥥",
layout="wide",
initial_sidebar_state="collapsed"
)
hide_streamlit_style = """
<style>
#MainMenu
{visibility: hidden;}
footer {visibility: hidden;}
[data-testid="collapsedControl"] {display: none}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
with st.popover("🔗 Menu"):
st.page_link("https://www.coconut-libtool.com/", label="Home", icon="🏠")
st.page_link("pages/1 Scattertext.py", label="Scattertext", icon="1️⃣")
st.page_link("pages/2 Topic Modeling.py", label="Topic Modeling", icon="2️⃣")
st.page_link("pages/3 Bidirected Network.py", label="Bidirected Network", icon="3️⃣")
st.page_link("pages/4 Sunburst.py", label="Sunburst", icon="4️⃣")
st.page_link("pages/5 Burst Detection.py", label="Burst Detection", icon="5️⃣")
st.page_link("pages/6 Keywords Stem.py", label="Keywords Stem", icon="6️⃣")
st.page_link("pages/7 Sentiment Analysis.py", label="Sentiment Analysis", icon="7️⃣")
st.page_link("pages/8 Shifterator.py", label="Shifterator", icon="8️⃣")
st.page_link("pages/9 Summarization.py", label = "Summarization",icon ="9️⃣")
st.page_link("pages/10 WordCloud.py", label = "WordCloud", icon = "🔟")
st.header("Summarization", anchor=False)
st.subheader('Put your file here...', anchor=False)
#========unique id========
@st.cache_resource(ttl=3600)
def create_list():
l = [1, 2, 3]
return l
l = create_list()
first_list_value = l[0]
l[0] = first_list_value + 1
uID = str(l[0])
@st.cache_data(ttl=3600)
def get_ext(uploaded_file):
extype = uID+uploaded_file.name
return extype
#===clear cache===
def reset_all():
st.cache_data.clear()
#===text reading===
def read_txt(intext):
return (intext.read()).decode()
#===csv reading===
def read_csv(uploaded_file):
fulltexts = pd.read_csv(uploaded_file)
fulltexts.rename(columns={fulltexts.columns[0]: "texts"}, inplace = True)
return fulltexts
#===Read data===
uploaded_file = st.file_uploader('', type=['txt','csv'], on_change=reset_all)
if uploaded_file is not None:
try:
extype = get_ext(uploaded_file)
if extype.endswith(".txt"):
fulltext = read_txt(uploaded_file)
elif extype.endswith(".csv"):
texts = read_csv(uploaded_file)
#Menu
method = st.selectbox("Method",("Extractive","Abstractive"))
if method == "Abstractive":
ab_method = st.selectbox("Abstractive method", ("Pegasus x-sum","FalconsAI t5","facebook/bart-large-cnn"))
min_length = st.number_input("Minimum length", min_value = 0)
max_length = st.number_input("Maximum length", min_value = 1)
if method == "Extractive":
ex_method = st.selectbox("Extractive method", ("t5","Spacy PyTextRank"))
if ex_method == "Spacy PyTextRank":
phrase_limit = st.number_input("Phrase length limit", min_value = 0)
sentence_limit = st.number_input("Sentence limit", min_value = 0)
elif ex_method == "t5" or ex_method == "FalconsAI t5":
min_length = st.number_input("Minimum length", min_value = 0)
max_length = st.number_input("Maximum length", min_value = 1)
if st.button("Submit", on_click=reset_all):
tab1, tab2, tab3 = st.tabs(["📈 Generate visualization", "📃 Reference", "⬇️ Download Help"])
with tab1:
def SpacyRank(text):
nlp = spacy.load("en_core_web_lg")
nlp.add_pipe("textrank")
doc = nlp(text)
summary = ""
for sent in doc._.textrank.summary(limit_phrases = phrase_limit, limit_sentences = sentence_limit):
summary+=str(sent) + '\n'
return summary
def t5summ(text):
model = T5ForConditionalGeneration.from_pretrained('t5-small')
tokenizer = T5Tokenizer.from_pretrained('t5-small')
input_text = "summarize: " + text
input_ids = tokenizer.encode(input_text,return_tensors='pt')
summed = model.generate(input_ids, max_length = max_length, min_length = min_length)
summary = tokenizer.decode(summed[0],skip_special_tokens=True)
return summary
def xsum(text):
model_name = "google/pegasus-xsum"
pegasus_tokenizer = PegasusTokenizer.from_pretrained(model_name)
summarizer = pipeline("summarization",
model=model_name,
tokenizer=pegasus_tokenizer,
framework="pt")
summed = summarizer(text, min_length = min_length, max_length = max_length)
summary = summed[0]["summary_text"]
return summary
def falcsum(text):
summarizer = pipeline("summarization",model = "Falconsai/text_summarization")
summed = summarizer(text, max_length = max_length, min_length = min_length, do_sample = False)
summary = summed[0]["summary_text"]
return summary
def transformersum(text,model):
summarizer = pipeline("summarization", model = model)
summed = summarizer(text, max_length = max_length, min_length = min_length, do_sample = False)
summary = summed[0]["summary_text"]
return summary
def bulkScore(combined):
scorelist = []
for column in range(len(combined)):
ref = combined[column][0]
cand = combined[column][1]
BLEuscore = nltk.translate.bleu_score.sentence_bleu([ref], cand)
scorer = rouge_scorer.RougeScorer(['rouge1', 'rougeL'], use_stemmer=True)
rougescores = scorer.score(ref, cand)
Bscore = f"{BLEuscore:.2f}"
Rscore = f"{rougescores['rouge1'].fmeasure:.2f}"
scoreTuplet = Bscore, Rscore
scorelist.append(scoreTuplet)
return scorelist
with st.spinner('Performing computations. Please wait ...'):
c1, c2 = st.columns([0.5,0.5], border=True)
if(extype.endswith(".txt")):
with c1:
if(extype.endswith(".txt")):
st.header("Original text")
with st.container(border=True):
st.write(fulltext)
if method == "Extractive":
if(ex_method == "Spacy PyTextRank"):
summary = SpacyRank(fulltext)
elif(ex_method == "t5"):
summary = t5summ(fulltext)
elif method == "Abstractive":
if ab_method == "Pegasus x-sum":
summary = xsum(fulltext)
elif ab_method == "FalconsAI t5":
summary = t5summ(fulltext)
elif ab_method == "facebook/bart-large-cnn":
summary = transformersum(fulltext,ab_method)
with c2:
st.header("Summarized")
with st.container(border = True):
st.write(summary)
st.header("Performance scores")
with st.container(border = True):
#performance metrics
reference = fulltext
candidate = summary
BLEuscore = nltk.translate.bleu_score.sentence_bleu([reference], candidate)
scorer = rouge_scorer.RougeScorer(['rouge1', 'rougeL'], use_stemmer=True)
rougescores = scorer.score(reference, candidate)
st.write(f"BLEU Score (NLTK): {BLEuscore:.2f}")
st.write(f"ROUGE-1 F1 Score: {rougescores['rouge1'].fmeasure:.2f}")
text_file = summary
st.download_button(
label = "Download Results",
data=text_file,
file_name="Summary.txt",
mime="text\csv",
on_click="ignore",)
elif(extype.endswith(".csv")):
if method == "Extractive":
if(ex_method == "Spacy PyTextRank"):
summaries = texts['texts'].apply(SpacyRank)
fullnsums = summaries.to_frame()
fullnsums['full'] = texts['texts']
fullnsums['combined'] = fullnsums.values.tolist()
elif(ex_method == "t5"):
summaries = texts['texts'].apply(t5summ)
fullnsums = summaries.to_frame()
fullnsums['full'] = texts['texts']
fullnsums['combined'] = fullnsums.values.tolist()
elif method == "Abstractive":
if ab_method == "Pegasus x-sum":
summaries = texts['texts'].apply(xsum)
fullnsums = summaries.to_frame()
fullnsums['full'] = texts['texts']
fullnsums['combined'] = fullnsums.values.tolist()
elif ab_method == "FalconsAI t5":
summaries = texts['texts'].apply(falcsum)
fullnsums = summaries.to_frame()
fullnsums['full'] = texts['texts']
fullnsums['combined'] = fullnsums.values.tolist()
with c1:
st.header("Download bulk summarization results")
result = summaries.to_csv()
st.download_button(
label = "Download Results",
data = result,
file_name = "Summaries.csv",
mime="text\csv",
on_click = "ignore"
)
with c2:
st.header("Scores and summaries results")
scores = pd.DataFrame.from_records(bulkScore(fullnsums.combined.to_list()),columns = ["BLEU","Rouge"])
summariesscores = fullnsums.join(scores)
summariesscores.drop("combined", axis = 1, inplace = True)
summariesscores.rename(columns = {"texts":"summarized"}, inplace = True)
result2 = summariesscores.to_csv()
st.download_button(
label = "Download scores and results",
data = result2,
file_name = "ScoredSummaries.csv",
mime = "test\csv",
on_click = "ignore"
)
#do this
with tab2:
st.write("")
with tab3:
st.header("Summarization result (.txt)")
st.write("Click the download button (example) to get the text file result")
st.button(label = "Download Results")
except Exception:
st.error("Please ensure that your file is correct. Please contact us if you find that this is an error.", icon="🚨")
st.stop()
|