File size: 22,002 Bytes
c837e02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13d6d96
 
c837e02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13d6d96
c837e02
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import streamlit as st
import streamlit.components.v1 as components
import shifterator as sh
from shifterator import ProportionShift
import pandas as pd
import re
import nltk
nltk.download('wordnet')
from nltk.stem import WordNetLemmatizer
nltk.download('stopwords')
from nltk.corpus import stopwords
import time
import sys
import json
from tools import sourceformat as sf
from collections import Counter
import io

#===config===
st.set_page_config(
    page_title="Coconut",
    page_icon="🥥",
    layout="wide",
    initial_sidebar_state="collapsed"
)

hide_streamlit_style = """
            <style>
            #MainMenu 
            {visibility: hidden;}
            footer {visibility: hidden;}
            [data-testid="collapsedControl"] {display: none}
            </style>
            """
st.markdown(hide_streamlit_style, unsafe_allow_html=True)

with st.popover("🔗 Menu"):
    st.page_link("https://www.coconut-libtool.com/", label="Home", icon="🏠")
    st.page_link("pages/1 Scattertext.py", label="Scattertext", icon="1️⃣")
    st.page_link("pages/2 Topic Modeling.py", label="Topic Modeling", icon="2️⃣")
    st.page_link("pages/3 Bidirected Network.py", label="Bidirected Network", icon="3️⃣")
    st.page_link("pages/4 Sunburst.py", label="Sunburst", icon="4️⃣")
    st.page_link("pages/5 Burst Detection.py", label="Burst Detection", icon="5️⃣")
    st.page_link("pages/6 Keywords Stem.py", label="Keywords Stem", icon="6️⃣")
    st.page_link("pages/7 Sentiment Analysis.py", label="Sentiment Analysis", icon="7️⃣")
    st.page_link("pages/8 Shifterator.py", label="Shifterator", icon="8️⃣")
    st.page_link("pages/9 Summarization.py", label = "Summarization",icon ="9️⃣")
    st.page_link("pages/10 WordCloud.py", label = "WordCloud", icon = "🔟")
    
st.header("Shifterator", anchor=False)
st.subheader('Put your file here...', anchor=False)

def reset_all():
    st.cache_data.clear()

@st.cache_data(ttl=3600)
def get_ext(extype):
    extype = uploaded_file.name
    return extype

#===upload file===
@st.cache_data(ttl=3600)
def upload(extype):
    papers = pd.read_csv(uploaded_file)
    #lens.org
    if 'Publication Year' in papers.columns:
               papers.rename(columns={'Publication Year': 'Year', 'Citing Works Count': 'Cited by',
                                     'Publication Type': 'Document Type', 'Source Title': 'Source title'}, inplace=True)
    
    if "dimensions" in uploaded_file.name.lower():
        papers = sf.dim(papers)
        col_dict = {'MeSH terms': 'Keywords',
        'PubYear': 'Year',
        'Times cited': 'Cited by',
        'Publication Type': 'Document Type'
        }
        papers.rename(columns=col_dict, inplace=True)
    
    return papers

@st.cache_data(ttl=3600)
def conv_txt(extype):
    if("pmc" in uploaded_file.name.lower() or "pubmed" in uploaded_file.name.lower()):
        file = uploaded_file
        papers = sf.medline(file)

    elif("hathi" in uploaded_file.name.lower()):
        papers = pd.read_csv(uploaded_file,sep = '\t')
        papers = sf.htrc(papers)
        col_dict={'title': 'title',
        'rights_date_used': 'Year',
        }
        papers.rename(columns=col_dict, inplace=True)
        
    else:
        col_dict = {'TI': 'Title',
                'SO': 'Source title',
                'DE': 'Author Keywords',
                'DT': 'Document Type',
                'AB': 'Abstract',
                'TC': 'Cited by',
                'PY': 'Year',
                'ID': 'Keywords Plus'}
        papers = pd.read_csv(uploaded_file, sep='\t', lineterminator='\r')
        papers.rename(columns=col_dict, inplace=True)
    print(papers)
    return papers

@st.cache_data(ttl=3600)
def conv_json(extype):
    col_dict={'title': 'title',
    'rights_date_used': 'Year',
    }

    data = json.load(uploaded_file)
    hathifile = data['gathers']
    keywords = pd.DataFrame.from_records(hathifile)

    keywords = sf.htrc(keywords)
    keywords.rename(columns=col_dict,inplace=True)
    return keywords

@st.cache_data(ttl=3600)
def conv_pub(extype):
    if (get_ext(extype)).endswith('.tar.gz'):
        bytedata = extype.read()
        keywords = sf.readPub(bytedata)
    elif (get_ext(extype)).endswith('.xml'):
        bytedata = extype.read()
        keywords = sf.readxml(bytedata)
    return keywords

@st.cache_data(ttl=3600)
def get_data(extype): 
    df_col = sorted(papers.select_dtypes(include=['object']).columns.tolist())
    list_title = [col for col in df_col if col.lower() == "title"]
    abstract_pattern = re.compile(r'abstract', re.IGNORECASE)
    list_abstract = [col for col in df_col if abstract_pattern.search(col)]

    if all(col in df_col for col in list_title) and all(col in df_col for col in list_abstract):
        selected_cols = list_abstract + list_title
    elif all(col in df_col for col in list_title):
        selected_cols = list_title
    elif all(col in df_col for col in list_abstract):
        selected_cols = list_abstract
    else:
        selected_cols = df_col

    if not selected_cols:
        selected_cols = df_col
    
    return df_col, selected_cols

@st.cache_data(ttl=3600)
def check_comparison(extype):
    comparison = ['Word-to-word', 'Manual label']
    
    if any('year' in col.lower() for col in papers.columns):
        comparison.append('Years')
    if any('source title' in col.lower() for col in papers.columns):
        comparison.append('Sources')

    comparison.sort(reverse=False)
    return comparison

#===clean csv===
@st.cache_data(ttl=3600, show_spinner=False)
def clean_csv(extype):
    paper = papers.dropna(subset=[ColCho])
                 
    #===mapping===
    paper[ColCho] = paper[ColCho].map(lambda x: x.lower())
    if rem_punc:
        paper[ColCho] = paper[ColCho].map(lambda x: re.sub('[,:;\.!-?•=]', ' ', x))
        paper[ColCho] = paper[ColCho].str.replace('\u201c|\u201d', '', regex=True) 
    if rem_copyright:
        paper[ColCho] = paper[ColCho].map(lambda x: re.sub('©.*', '', x))
        
    #===stopword removal===
    stop = stopwords.words('english')
    paper[ColCho] = paper[ColCho].apply(lambda x: ' '.join([word for word in x.split() if word not in stop]))
          
    #===lemmatize===
    lemmatizer = WordNetLemmatizer()
    
    @st.cache_data(ttl=3600)
    def lemmatize_words(text):
        words = text.split()
        words = [lemmatizer.lemmatize(word) for word in words]
        return ' '.join(words)
        
    paper[ColCho] = paper[ColCho].apply(lemmatize_words)
    
    words_rmv = [word.strip() for word in words_to_remove.split(";")]
    remove_set = set(words_rmv)
    
    @st.cache_data(ttl=3600)
    def remove_words(text):
        words = text.split()  
        cleaned_words = [word for word in words if word not in remove_set]
        return ' '.join(cleaned_words) 
        
    paper[ColCho] = paper[ColCho].apply(remove_words)
         
    return paper

@st.cache_data(ttl=3600)
def get_minmax(extype):
    MIN = int(papers['Year'].min())
    MAX = int(papers['Year'].max())
    GAP = MAX - MIN
    MID = round((MIN + MAX) / 2)
    return MIN, MAX, GAP, MID

@st.cache_data(ttl=3600)
def running_shifterator(dict1, dict2):
    try:
        if method_shifts == 'Proportion Shifts':
            proportion_shift = sh.ProportionShift(type2freq_1=dict1, type2freq_2=dict2)
            ax = proportion_shift.get_shift_graph(system_names = ['Topic 1', 'Topic 2'], title='Proportion Shifts')     
            
        elif method_shifts == 'Shannon Entropy Shifts':
            entropy_shift = sh.EntropyShift(type2freq_1=dict1,
                                type2freq_2=dict2,
                                base=2)
            ax = entropy_shift.get_shift_graph(system_names = ['Topic 1', 'Topic 2'], title='Shannon Entropy Shifts')     
            
        elif method_shifts == 'Tsallis Entropy Shifts':
            entropy_shift = sh.EntropyShift(type2freq_1=dict1,
                                type2freq_2=dict2,
                                base=2,
                                alpha=0.8)
            ax = entropy_shift.get_shift_graph(system_names = ['Topic 1', 'Topic 2'], title='Tsallis Entropy Shifts')     
            
        elif method_shifts == 'Kullback-Leibler Divergence Shifts':
            kld_shift = sh.KLDivergenceShift(type2freq_1=dict1,
                                 type2freq_2=dict2,
                                 base=2)
            ax = kld_shift.get_shift_graph(system_names = ['Topic 1', 'Topic 2'], title='Kullback-Leibler Divergence Shifts')     
            
        elif method_shifts == 'Jensen-Shannon Divergence Shifts':
            jsd_shift = sh.JSDivergenceShift(type2freq_1=dict1,
                                 type2freq_2=dict2,
                                 weight_1=0.5,
                                 weight_2=0.5,
                                 base=2,
                                 alpha=1)
            ax = jsd_shift.get_shift_graph(system_names = ['Topic 1', 'Topic 2'], title='Jensen-Shannon Divergence Shifts')     

        fig = ax.get_figure()
        
        buf = io.BytesIO()
        fig.savefig(buf, format="png", bbox_inches='tight')
        buf.seek(0)
        
        return fig, buf

    except ValueError:
        st.warning('Please check your data.', icon="⚠️")
        sys.exit()

@st.cache_data(ttl=3600)
def df2dict(df_1, df_2):
    text1 = ' '.join(df_1.dropna().astype(str))
    text2 = ' '.join(df_2.dropna().astype(str))
                
    text1_clean = re.sub(r'\d+', '', text1)
    text2_clean = re.sub(r'\d+', '', text2)
                
    tokens1 = re.findall(r'\b\w+\b', text1_clean.lower())
    tokens2 = re.findall(r'\b\w+\b', text2_clean.lower())
                
    type2freq_1 = {k: int(v) for k, v in Counter(tokens1).items()}
    type2freq_2 = {k: int(v) for k, v in Counter(tokens2).items()}

    return type2freq_1, type2freq_2

@st.cache_data(ttl=3600)
def dict_w2w(search_terms1, search_terms2):
    selected_col = [ColCho]
    dfs1 = pd.DataFrame()
    for term in search_terms1:
        dfs1 = pd.concat([dfs1, paper[paper[selected_col[0]].str.contains(r'\b' + term + r'\b', case=False, na=False)]], ignore_index=True)
    dfs1['Topic'] = 'First Term'
    dfs1 = dfs1.drop_duplicates()
        
    dfs2 = pd.DataFrame()
    for term in search_terms2:
        dfs2 = pd.concat([dfs2, paper[paper[selected_col[0]].str.contains(r'\b' + term + r'\b', case=False, na=False)]], ignore_index=True)
    dfs2['Topic'] = 'Second Term'
    dfs2 = dfs2.drop_duplicates()
    
    type2freq_1, type2freq_2 = df2dict(dfs1[selected_col[0]], dfs2[selected_col[0]])
    
    return type2freq_1, type2freq_2

@st.cache_data(ttl=3600)
def dict_sources(stitle1, stitle2):
    selected_col = [ColCho]
    dfs1 = paper[paper['Source title'].str.contains(stitle1, case=False, na=False)]
    dfs1['Topic'] = stitle1
    dfs2 = paper[paper['Source title'].str.contains(stitle2, case=False, na=False)]
    dfs2['Topic'] = stitle2

    type2freq_1, type2freq_2 = df2dict(dfs1[selected_col[0]], dfs2[selected_col[0]])
    
    return type2freq_1, type2freq_2

@st.cache_data(ttl=3600)
def dict_years(first_range, second_range):
    selected_col = [ColCho]
    first_filter_df = paper[(paper['Year'] >= first_range[0]) & (paper['Year'] <= first_range[1])].copy()
    first_filter_df['Topic Range'] = 'First range'
        
    second_filter_df = paper[(paper['Year'] >= second_range[0]) & (paper['Year'] <= second_range[1])].copy()
    second_filter_df['Topic Range'] = 'Second range'

    type2freq_1, type2freq_2 = df2dict(first_filter_df[selected_col[0]], second_filter_df[selected_col[0]])
    
    return type2freq_1, type2freq_2
    

#===Read data===
uploaded_file = st.file_uploader('', type=['csv', 'txt', 'json', 'tar.gz','xml'], on_change=reset_all)

if uploaded_file is not None:
    try:
        extype = get_ext(uploaded_file)
    
        if extype.endswith('.csv'):
             papers = upload(extype) 
        elif extype.endswith('.txt'):
             papers = conv_txt(extype)
        elif extype.endswith('.json'):
            papers = conv_json(extype)
        elif extype.endswith('.tar.gz') or extype.endswith('.xml'):
            papers = conv_pub(uploaded_file)
    
        df_col, selected_cols = get_data(extype)
        comparison = check_comparison(extype)
    
        #Menu
        c1, c2, c3 = st.columns([4,0.1,4])
        ColCho = c1.selectbox(
                'Choose column to analyze',
                (selected_cols), on_change=reset_all)
    
        c2.write('')
    
        compare = c3.selectbox(
                'Type of comparison',
                (comparison), on_change=reset_all)
        
        with st.expander("🧮 Show advance settings"):
            y1, y2, y3 = st.columns([4,0.1,4])
            t1, t2 = st.columns([3,3])
            words_to_remove = y1.text_input('Input your text', on_change=reset_all, placeholder='Remove specific words. Separate words by semicolons (;)')
            method_shifts = y3.selectbox("Choose preferred method",('Proportion Shifts','Shannon Entropy Shifts', 'Tsallis Entropy Shifts','Kullback-Leibler Divergence Shifts', 
                                                                   'Jensen-Shannon Divergence Shifts'), on_change=reset_all)
            rem_copyright = t1.toggle('Remove copyright statement', value=True, on_change=reset_all)
            rem_punc = t2.toggle('Remove punctuation', value=False, on_change=reset_all)
    
        if method_shifts == 'Kullback-Leibler Divergence Shifts':
            st.info('The Kullback-Leibler Divergence is only well-defined if every single word in the comparison text is also in the reference text.', icon="ℹ️")
        
        paper = clean_csv(extype)
    
        tab1, tab2, tab3, tab4 = st.tabs(["📈 Generate visualization", "📃 Reference", "📓 Recommended Reading", "⬇️ Download Help"])
    
        with tab1:
             #===visualization===
            if compare == 'Word-to-word':
                col1, col2, col3 = st.columns([4,0.1,4])
                text1 = col1.text_input('First Term', on_change=reset_all, placeholder='put comma if you have more than one')
                search_terms1 = [term.strip() for term in text1.split(",") if term.strip()]
                col2.write('')
                text2 = col3.text_input('Second Term', on_change=reset_all, placeholder='put comma if you have more than one')
                search_terms2 = [term.strip() for term in text2.split(",") if term.strip()]
                
                type2freq_1, type2freq_2 = dict_w2w(search_terms1, search_terms2)
        
                if not type2freq_1 and not type2freq_2:
                    st.warning('We cannot find anything in your document.', icon="⚠️")
                elif not type2freq_1:
                    st.warning(f'We cannot find {text1} in your document.', icon="⚠️")
                elif not type2freq_2:
                    st.warning(f'We cannot find {text2} in your document.', icon="⚠️")
                else:
                    with st.spinner('Processing. Please wait until the visualization comes up'):
                        fig, buf = running_shifterator(type2freq_1, type2freq_2)
                        st.pyplot(fig)
        
            elif compare == 'Manual label':
                col1, col2, col3 = st.columns(3)
        
                df_col_sel = sorted([col for col in paper.columns.tolist()])
                     
                column_selected = col1.selectbox(
                    'Choose column',
                    (df_col_sel), on_change=reset_all)
        
                list_words = paper[column_selected].values.tolist()
                list_unique = sorted(list(set(list_words)))
                
                if column_selected is not None:
                    label1 = col2.selectbox(
                        'Choose first label',
                        (list_unique), on_change=reset_all)
        
                    default_index = 0 if len(list_unique) == 1 else 1
                    label2 = col3.selectbox(
                        'Choose second label',
                        (list_unique), on_change=reset_all, index=default_index)
        
                filtered_df = paper[paper[column_selected].isin([label1, label2])].reset_index(drop=True)
                
                dfs1 = filtered_df[filtered_df[column_selected] == label1].reset_index(drop=True)
                dfs2 = filtered_df[filtered_df[column_selected] == label2].reset_index(drop=True)

                type2freq_1, type2freq_2 = df2dict(dfs1[ColCho], dfs2[ColCho])
                
                with st.spinner('Processing. Please wait until the visualization comes up'):
                    fig, buf = running_shifterator(type2freq_1, type2freq_2)
                    st.pyplot(fig)
        
            elif compare == 'Sources':
                col1, col2, col3 = st.columns([4,0.1,4])
        
                unique_stitle = set()
                unique_stitle.update(paper['Source title'].dropna())
                list_stitle = sorted(list(unique_stitle))
                     
                stitle1 = col1.selectbox(
                    'Choose first label',
                    (list_stitle), on_change=reset_all)
                col2.write('')
                default_index = 0 if len(list_stitle) == 1 else 1
                stitle2 = col3.selectbox(
                    'Choose second label',
                    (list_stitle), on_change=reset_all, index=default_index)
        
                type2freq_1, type2freq_2 = dict_sources(stitle1, stitle2)
        
                with st.spinner('Processing. Please wait until the visualization comes up'):
                    fig, buf = running_shifterator(type2freq_1, type2freq_2)
                    st.pyplot(fig)
        
            elif compare == 'Years':
                col1, col2, col3 = st.columns([4,0.1,4])
                
                MIN, MAX, GAP, MID = get_minmax(extype)
                if (GAP != 0):
                    first_range = col1.slider('First Range', min_value=MIN, max_value=MAX, value=(MIN, MID), on_change=reset_all)
                    col2.write('')
                    second_range = col3.slider('Second Range', min_value=MIN, max_value=MAX, value=(MID, MAX), on_change=reset_all)
                
                    type2freq_1, type2freq_2 = dict_years(first_range, second_range)
        
                    with st.spinner('Processing. Please wait until the visualization comes up'):
                        fig, buf = running_shifterator(type2freq_1, type2freq_2)
                        st.pyplot(fig)

                else:
                    st.write('You only have data in ', (MAX))

            d1, d2 = st.columns(2)
                
            d1.download_button(
                label="📥 Download Graph",
                data=buf,
                file_name="shifterator.png",
                mime="image/png"
            )

            @st.cache_data(ttl=3600)
            def shifts_dfs(type2freq_1, type2freq_2):
                proportion_shift = ProportionShift(type2freq_1=type2freq_1, type2freq_2=type2freq_2)
                
                words = list(proportion_shift.types)
                shift_scores = proportion_shift.get_shift_scores()
                freq1 = proportion_shift.type2freq_1
                freq2 = proportion_shift.type2freq_2

                data = []
                for word, score in shift_scores.items():
                    data.append({
                        'word': word,
                        'freq_text1': proportion_shift.type2freq_1.get(word, 0),
                        'freq_text2': proportion_shift.type2freq_2.get(word, 0),
                        'shift_score': score
                    })
                
                df_shift = pd.DataFrame(data)
                df_shift = df_shift.sort_values('shift_score')
                
                return df_shift.to_csv(index=False).encode('utf-8')

            csv = shifts_dfs(type2freq_1, type2freq_2)

            d2.download_button(
                "📥 Click to download result",
                csv,
                "shiftertor_dataframe.csv",
                "text/csv")
    
        with tab2:
            st.markdown('**Gallagher, R.J., Frank, M.R., Mitchell, L. et al. (2021). Generalized Word Shift Graphs: A Method for Visualizing and Explaining Pairwise Comparisons Between Texts. EPJ Data Science, 10(4).** https://doi.org/10.1140/epjds/s13688-021-00260-3')
    
        with tab3:
            st.markdown('**Sánchez-Franco, M. J., & Rey-Tienda, S. (2023). The role of user-generated content in tourism decision-making: an exemplary study of Andalusia, Spain. Management Decision, 62(7).** https://doi.org/10.1108/md-06-2023-0966')
            st.markdown('**Ipek Baris Schlicht, Fernandez, E., Chulvi, B., & Rosso, P. (2023). Automatic detection of health misinformation: a systematic review. Journal of Ambient Intelligence and Humanized Computing, 15.** https://doi.org/10.1007/s12652-023-04619-4')
            st.markdown('**Torricelli, M., Falkenberg, M., Galeazzi, A., Zollo, F., Quattrociocchi, W., & Baronchelli, A. (2023). Hurricanes Increase Climate Change Conversations on Twitter. PLOS Climate, 2(11)** https://doi.org/10.1371/journal.pclm.0000277')

        with tab4:
            st.subheader(':blue[Result]', anchor=False)
            st.button('📥 Download Graph')
            st.text("Click Download Graph button.")  

            st.divider()
            st.subheader(':blue[Shifterator Dataframe]', anchor=False)
            st.button('📥 Click to download result')
            st.text("Click the Download button to get the CSV result.") 

    except:
        st.error("Please ensure that your file is correct. Please contact us if you find that this is an error.", icon="🚨")
        st.stop()