Spaces:
Running
Running
File size: 18,135 Bytes
c837e02 13d6d96 c837e02 13d6d96 c837e02 13d6d96 c837e02 13d6d96 c837e02 13d6d96 c837e02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
#import module
import streamlit as st
import pandas as pd
import re
import nltk
nltk.download('punkt')
from nltk.tokenize import word_tokenize
from mlxtend.preprocessing import TransactionEncoder
te = TransactionEncoder()
from mlxtend.frequent_patterns import fpgrowth
from mlxtend.frequent_patterns import association_rules
from streamlit_agraph import agraph, Node, Edge, Config
import nltk
nltk.download('wordnet')
from nltk.stem import WordNetLemmatizer
nltk.download('stopwords')
from nltk.corpus import stopwords
from nltk.stem.snowball import SnowballStemmer
import sys
import time
import json
from tools import sourceformat as sf
import networkx as nx
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import altair as alt
import altair_nx as anx
#===config===
st.set_page_config(
page_title="Coconut",
page_icon="π₯₯",
layout="wide",
initial_sidebar_state="collapsed"
)
hide_streamlit_style = """
<style>
#MainMenu
{visibility: hidden;}
footer {visibility: hidden;}
[data-testid="collapsedControl"] {display: none}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
with st.popover("π Menu"):
st.page_link("https://www.coconut-libtool.com/", label="Home", icon="π ")
st.page_link("pages/1 Scattertext.py", label="Scattertext", icon="1οΈβ£")
st.page_link("pages/2 Topic Modeling.py", label="Topic Modeling", icon="2οΈβ£")
st.page_link("pages/3 Bidirected Network.py", label="Bidirected Network", icon="3οΈβ£")
st.page_link("pages/4 Sunburst.py", label="Sunburst", icon="4οΈβ£")
st.page_link("pages/5 Burst Detection.py", label="Burst Detection", icon="5οΈβ£")
st.page_link("pages/6 Keywords Stem.py", label="Keywords Stem", icon="6οΈβ£")
st.page_link("pages/7 Sentiment Analysis.py", label="Sentiment Analysis", icon="7οΈβ£")
st.page_link("pages/8 Shifterator.py", label="Shifterator", icon="8οΈβ£")
st.page_link("pages/9 Summarization.py", label = "Summarization",icon ="9οΈβ£")
st.page_link("pages/10 WordCloud.py", label = "WordCloud", icon = "π")
st.header("Bidirected Network", anchor=False)
st.subheader('Put your file here...', anchor=False)
#===clear cache===
def reset_all():
st.cache_data.clear()
#===check type===
@st.cache_data(ttl=3600)
def get_ext(extype):
extype = uploaded_file.name
return extype
@st.cache_data(ttl=3600)
def upload(extype):
papers = pd.read_csv(uploaded_file)
if "About the data" in papers.columns[0]:
papers = sf.dim(papers)
col_dict = {'MeSH terms': 'Keywords',
'PubYear': 'Year',
'Times cited': 'Cited by',
'Publication Type': 'Document Type'
}
papers.rename(columns=col_dict, inplace=True)
return papers
return papers
@st.cache_data(ttl=3600)
def conv_txt(extype):
if("PMID" in (uploaded_file.read()).decode()):
uploaded_file.seek(0)
papers = sf.medline(uploaded_file)
print(papers)
return papers
col_dict = {'TI': 'Title',
'SO': 'Source title',
'DE': 'Author Keywords',
'DT': 'Document Type',
'AB': 'Abstract',
'TC': 'Cited by',
'PY': 'Year',
'ID': 'Keywords Plus',
'rights_date_used': 'Year'}
uploaded_file.seek(0)
papers = pd.read_csv(uploaded_file, sep='\t')
if("htid" in papers.columns):
papers = sf.htrc(papers)
papers.rename(columns=col_dict, inplace=True)
print(papers)
return papers
@st.cache_data(ttl=3600)
def conv_json(extype):
col_dict={'title': 'title',
'rights_date_used': 'Year',
}
data = json.load(uploaded_file)
hathifile = data['gathers']
keywords = pd.DataFrame.from_records(hathifile)
keywords = sf.htrc(keywords)
keywords.rename(columns=col_dict,inplace=True)
return keywords
@st.cache_data(ttl=3600)
def conv_pub(extype):
if (get_ext(extype)).endswith('.tar.gz'):
bytedata = extype.read()
keywords = sf.readPub(bytedata)
elif (get_ext(extype)).endswith('.xml'):
bytedata = extype.read()
keywords = sf.readxml(bytedata)
return keywords
#===Read data===
uploaded_file = st.file_uploader('', type=['csv', 'txt','json','tar.gz', 'xml'], on_change=reset_all)
if uploaded_file is not None:
try:
extype = get_ext(uploaded_file)
if extype.endswith('.csv'):
papers = upload(extype)
elif extype.endswith('.txt'):
papers = conv_txt(extype)
elif extype.endswith('.json'):
papers = conv_json(extype)
elif extype.endswith('.tar.gz') or extype.endswith('.xml'):
papers = conv_pub(uploaded_file)
@st.cache_data(ttl=3600)
def get_data_arul(extype):
list_of_column_key = list(papers.columns)
list_of_column_key = [k for k in list_of_column_key if 'Keyword' in k]
return papers, list_of_column_key
papers, list_of_column_key = get_data_arul(extype)
col1, col2 = st.columns(2)
with col1:
dispmethod = st.selectbox('Choose display method',
("Altair-nx", "Agraph"), on_change=reset_all)
method = st.selectbox(
'Choose method',
('Lemmatization', 'Stemming'), on_change=reset_all)
if dispmethod=="Altair-nx":
layout = st.selectbox(
'Choose graph layout',
['Circular','Kamada Kawai','Random','Spring','Shell']
)
with col2:
keyword = st.selectbox(
'Choose column',
(list_of_column_key), on_change=reset_all)
#===body===
@st.cache_data(ttl=3600)
def clean_arul(extype):
global keyword, papers
try:
arul = papers.dropna(subset=[keyword])
except KeyError:
st.error('Error: Please check your Author/Index Keywords column.')
sys.exit(1)
arul[keyword] = arul[keyword].map(lambda x: re.sub('-ββ', ' ', x))
arul[keyword] = arul[keyword].map(lambda x: re.sub('; ', ' ; ', x))
arul[keyword] = arul[keyword].map(lambda x: x.lower())
arul[keyword] = arul[keyword].dropna()
return arul
arul = clean_arul(extype)
#===stem/lem===
@st.cache_data(ttl=3600)
def lemma_arul(extype):
lemmatizer = WordNetLemmatizer()
def lemmatize_words(text):
words = text.split()
words = [lemmatizer.lemmatize(word) for word in words]
return ' '.join(words)
arul[keyword] = arul[keyword].apply(lemmatize_words)
return arul
@st.cache_data(ttl=3600)
def stem_arul(extype):
stemmer = SnowballStemmer("english")
def stem_words(text):
words = text.split()
words = [stemmer.stem(word) for word in words]
return ' '.join(words)
arul[keyword] = arul[keyword].apply(stem_words)
return arul
if method is 'Lemmatization':
arul = lemma_arul(extype)
else:
arul = stem_arul(extype)
@st.cache_data(ttl=3600)
def arm(extype):
arule = arul[keyword].str.split(' ; ')
arule_list = arule.values.tolist()
te_ary = te.fit(arule_list).transform(arule_list)
df = pd.DataFrame(te_ary, columns=te.columns_)
return df
df = arm(extype)
col1, col2, col3 = st.columns(3)
with col1:
supp = st.slider(
'Select value of Support',
0.001, 1.000, (0.010), on_change=reset_all)
with col2:
conf = st.slider(
'Select value of Confidence',
0.001, 1.000, (0.050), on_change=reset_all)
with col3:
maxlen = st.slider(
'Maximum length of the itemsets generated',
2, 8, (2), on_change=reset_all)
tab1, tab2, tab3, tab4 = st.tabs(["π Result & Generate visualization", "π Reference", "π Recommended Reading", "β¬οΈ Download Help"])
with tab1:
#===Association rules===
@st.cache_data(ttl=3600)
def freqitem(extype):
freq_item = fpgrowth(df, min_support=supp, use_colnames=True, max_len=maxlen)
return freq_item
freq_item = freqitem(extype)
col1, col2 = st.columns(2)
with col1:
st.write('π¨ The more data you have, the longer you will have to wait.')
with col2:
showall = st.checkbox('Show all nodes', value=True, on_change=reset_all)
@st.cache_data(ttl=3600)
def arm_table(extype):
restab = association_rules(freq_item, metric='confidence', min_threshold=conf)
restab = restab[['antecedents', 'consequents', 'antecedent support', 'consequent support', 'support', 'confidence', 'lift', 'conviction']]
restab['antecedents'] = restab['antecedents'].apply(lambda x: ', '.join(list(x))).astype('unicode')
restab['consequents'] = restab['consequents'].apply(lambda x: ', '.join(list(x))).astype('unicode')
if showall:
restab['Show'] = True
else:
restab['Show'] = False
return restab
if freq_item.empty:
st.error('Please lower your value.', icon="π¨")
else:
restab = arm_table(extype)
restab = st.data_editor(restab, use_container_width=True)
res = restab[restab['Show'] == True]
#===visualize===
if st.button('π Generate network visualization', on_click=reset_all):
with st.spinner('Visualizing, please wait ....'):
@st.cache_data(ttl=3600)
def map_node(extype):
res['to'] = res['antecedents'] + ' β ' + res['consequents'] + '\n Support = ' + res['support'].astype(str) + '\n Confidence = ' + res['confidence'].astype(str) + '\n Conviction = ' + res['conviction'].astype(str)
res_ant = res[['antecedents','antecedent support']].rename(columns={'antecedents': 'node', 'antecedent support': 'size'})
res_con = res[['consequents','consequent support']].rename(columns={'consequents': 'node', 'consequent support': 'size'})
res_node = pd.concat([res_ant, res_con]).drop_duplicates(keep='first')
return res_node, res
res_node, res = map_node(extype)
if dispmethod == "Agraph":
@st.cache_data(ttl=3600)
def arul_network(extype):
nodes = []
edges = []
for w,x in zip(res_node['size'], res_node['node']):
nodes.append( Node(id=x,
label=x,
size=50*w+10,
shape="dot",
labelHighlightBold=True,
group=x,
opacity=10,
mass=1)
)
for y,z,a,b in zip(res['antecedents'],res['consequents'],res['confidence'],res['to']):
edges.append( Edge(source=y,
target=z,
title=b,
width=a*2,
physics=True,
smooth=True
)
)
return nodes, edges
nodes, edges = arul_network(extype)
config = Config(width=1200,
height=800,
directed=True,
physics=True,
hierarchical=False,
maxVelocity=5
)
return_value = agraph(nodes=nodes,
edges=edges,
config=config)
time.sleep(1)
st.toast('Process completed', icon='π')
elif(dispmethod=="Altair-nx"):
@st.cache_data(ttl=3600)
def graphmaker(__netgraph):
#add nodes, w is weight, x is node label
for w,x in zip(res_node['size'], res_node['node']):
__netgraph.add_node(x, size = (400 + 2000*w))
#add edges, y is startpoint, z is endpoint, a is edge weight, b is title
for y,z,a,b in zip(res['antecedents'],res['consequents'],res['confidence'],res['to']):
__netgraph.add_edge(y,z, weight = int(a*10))
#Make graph with NetworkX
G=nx.DiGraph()
graphmaker(G)
#Graph layout
if(layout=="Spring"):
pos=nx.spring_layout(G)
elif(layout == "Kamada Kawai"):
pos=nx.kamada_kawai_layout(G)
elif(layout == "Circular"):
pos = nx.circular_layout(G)
elif(layout=="Random"):
pos = nx.random_layout(G)
elif(layout=="Shell"):
pos=nx.shell_layout(G)
graph = anx.draw_networkx(G,pos, node_label = 'node',
edge_width = 'weight',
node_size = 'size',
curved_edges = True,
node_font_size=12,
edge_alpha = 0.25,
edge_colour = "grey",
node_colour = "royalblue",
chart_width=800,
chart_height=600).interactive()
with st.container(border = True):
st.altair_chart(graph)
with tab2:
st.markdown('**Santosa, F. A. (2023). Adding Perspective to the Bibliometric Mapping Using Bidirected Graph. Open Information Science, 7(1), 20220152.** https://doi.org/10.1515/opis-2022-0152')
with tab3:
st.markdown('**Agrawal, R., ImieliΕski, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In ACM SIGMOD Record (Vol. 22, Issue 2, pp. 207β216). Association for Computing Machinery (ACM).** https://doi.org/10.1145/170036.170072')
st.markdown('**Brin, S., Motwani, R., Ullman, J. D., & Tsur, S. (1997). Dynamic itemset counting and implication rules for market basket data. ACM SIGMOD Record, 26(2), 255β264.** https://doi.org/10.1145/253262.253325')
st.markdown('**Edmonds, J., & Johnson, E. L. (2003). Matching: A Well-Solved Class of Integer Linear Programs. Combinatorial Optimization β Eureka, You Shrink!, 27β30.** https://doi.org/10.1007/3-540-36478-1_3')
st.markdown('**Li, M. (2016, August 23). An exploration to visualise the emerging trends of technology foresight based on an improved technique of co-word analysis and relevant literature data of WOS. Technology Analysis & Strategic Management, 29(6), 655β671.** https://doi.org/10.1080/09537325.2016.1220518')
with tab4:
st.subheader("Download visualization")
st.text("Zoom in, zoom out, or shift the nodes as desired, then right-click and select Save image as ...")
st.markdown("")
st.subheader("Download table as CSV")
st.text("Hover cursor over table, and click download arrow")
st.image("images/tablenetwork.png")
except:
st.error("Please ensure that your file is correct. Please contact us if you find that this is an error.", icon="π¨")
st.stop()
|