File size: 11,860 Bytes
c837e02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import streamlit as st
import pandas as pd
import numpy as np
import re
import nltk
nltk.download('wordnet')
from nltk.stem import WordNetLemmatizer
nltk.download('stopwords')
from nltk.corpus import stopwords
from pprint import pprint
import pickle
import streamlit.components.v1 as components
from io import StringIO
from nltk.stem.snowball import SnowballStemmer
import csv
import sys
import json
from tools import sourceformat as sf


#===config===
st.set_page_config(
    page_title="Coconut",
    page_icon="πŸ₯₯",
    layout="wide",
    initial_sidebar_state="collapsed"
)

hide_streamlit_style = """

            <style>

            #MainMenu 

            {visibility: hidden;}

            footer {visibility: hidden;}

            [data-testid="collapsedControl"] {display: none}

            </style>

            """
st.markdown(hide_streamlit_style, unsafe_allow_html=True)

with st.popover("πŸ”— Menu"):
    st.page_link("https://www.coconut-libtool.com/", label="Home", icon="🏠")
    st.page_link("pages/1 Scattertext.py", label="Scattertext", icon="1️⃣")
    st.page_link("pages/2 Topic Modeling.py", label="Topic Modeling", icon="2️⃣")
    st.page_link("pages/3 Bidirected Network.py", label="Bidirected Network", icon="3️⃣")
    st.page_link("pages/4 Sunburst.py", label="Sunburst", icon="4️⃣")
    st.page_link("pages/5 Burst Detection.py", label="Burst Detection", icon="5️⃣")
    st.page_link("pages/6 Keywords Stem.py", label="Keywords Stem", icon="6️⃣")
    st.page_link("pages/7 Sentiment Analysis.py", label="Sentiment Analysis", icon="7️⃣")
    

st.header("Keywords Stem", anchor=False)
st.subheader('Put your file here...', anchor=False)

def reset_data():
     st.cache_data.clear()

#===check filetype===
@st.cache_data(ttl=3600)
def get_ext(extype):
    extype = uploaded_file.name
    return extype
     
#===upload===
@st.cache_data(ttl=3600)
def upload(extype):
    keywords = pd.read_csv(uploaded_file)

    if "About the data" in keywords.columns[0]:
        keywords = sf.dim(keywords)
        col_dict = {'MeSH terms': 'Keywords',
        'PubYear': 'Year',
        'Times cited': 'Cited by',
        'Publication Type': 'Document Type'
        }
        keywords.rename(columns=col_dict, inplace=True)

    return keywords
@st.cache_data(ttl=3600)
def conv_txt(extype):
    if("PMID" in (uploaded_file.read()).decode()):
        uploaded_file.seek(0)
        papers = sf.medline(uploaded_file)
        print(papers)
        return papers
    col_dict = {'TI': 'Title',
            'SO': 'Source title',
            'DE': 'Author Keywords',
            'DT': 'Document Type',
            'AB': 'Abstract',
            'TC': 'Cited by',
            'PY': 'Year',
            'ID': 'Keywords Plus',
            'rights_date_used': 'Year'}
    uploaded_file.seek(0)
    papers = pd.read_csv(uploaded_file, sep='\t')
    if("htid" in papers.columns):
        papers = sf.htrc(papers)
    papers.rename(columns=col_dict, inplace=True)
    print(papers)
    return papers

@st.cache_data(ttl=3600)
def rev_conv_txt(extype):
    col_dict_rev = {'Title': 'TI',
            'Source title': 'SO',
            'Author Keywords': 'DE',
            'Keywords Plus': 'ID'}
    keywords.rename(columns=col_dict_rev, inplace=True)
    return keywords

@st.cache_data(ttl=3600)
def conv_json(extype):
    col_dict={'title': 'title',
    'rights_date_used': 'Year',
    }

    data = json.load(uploaded_file)
    hathifile = data['gathers']
    keywords = pd.DataFrame.from_records(hathifile)

    keywords = sf.htrc(keywords)
    keywords.rename(columns=col_dict,inplace=True)
    return keywords

def conv_pub(extype):
    if (get_ext(extype)).endswith('.tar.gz'):
        bytedata = extype.read()
        keywords = sf.readPub(bytedata)
    elif (get_ext(extype)).endswith('.xml'):
        bytedata = extype.read()
        keywords = sf.readxml(bytedata)
    return keywords

@st.cache_data(ttl=3600)
def get_data(extype):
    list_of_column_key = list(keywords.columns)
    list_of_column_key = [k for k in list_of_column_key if 'Keyword' in k]
    return list_of_column_key

uploaded_file = st.file_uploader('', type=['csv','txt','json','tar.gz','xml'], on_change=reset_data)

if uploaded_file is not None:
    try:
        extype = get_ext(uploaded_file)
        if extype.endswith('.csv'):
            keywords = upload(extype) 
                      
        elif extype.endswith('.txt'):
            keywords = conv_txt(extype)

        elif extype.endswith('.json'):
            keywords = conv_json(extype)
        elif extype.endswith('.tar.gz') or extype.endswith('.xml'):
            keywords = conv_pub(uploaded_file)

        list_of_column_key = get_data(extype)
    
        col1, col2 = st.columns(2)
        with col1:
            method = st.selectbox(
                'Choose method',
                ('Lemmatization', 'Stemming'), on_change=reset_data)
        with col2:
            keyword = st.selectbox(
                'Choose column',
                (list_of_column_key), on_change=reset_data)
    
        @st.cache_data(ttl=3600)
        def clean_keyword(extype):      
            global keyword, keywords
            try:
                key = keywords[keyword]
            except KeyError:
                st.error('Error: Please check your Author/Index Keywords column.')
                sys.exit(1)
            keywords = keywords.replace(np.nan, '', regex=True)
            keywords[keyword] = keywords[keyword].astype(str)
            keywords[keyword] = keywords[keyword].map(lambda x: re.sub('-', ' ', x))
            keywords[keyword] = keywords[keyword].map(lambda x: re.sub('; ', ' ; ', x))
            keywords[keyword] = keywords[keyword].map(lambda x: x.lower())
            
            #===Keywords list===
            key = key.dropna()
            key = pd.concat([key.str.split('; ', expand=True)], axis=1)
            key = pd.Series(np.ravel(key)).dropna().drop_duplicates().sort_values().reset_index()
            key[0] = key[0].map(lambda x: re.sub('-', ' ', x))
            key['new']=key[0].map(lambda x: x.lower())
    
            return keywords, key
         
        #===stem/lem===
        @st.cache_data(ttl=3600)
        def Lemmatization(extype):
            lemmatizer = WordNetLemmatizer()
            def lemmatize_words(text):
                words = text.split()
                words = [lemmatizer.lemmatize(word) for word in words]
                return ' '.join(words)
            keywords[keyword] = keywords[keyword].apply(lemmatize_words)
            key['new'] = key['new'].apply(lemmatize_words)
            keywords[keyword] = keywords[keyword].map(lambda x: re.sub(' ; ', '; ', x))
            return keywords, key
                    
        @st.cache_data(ttl=3600)
        def Stemming(extype):
            stemmer = SnowballStemmer("english")
            def stem_words(text):
                words = text.split()
                words = [stemmer.stem(word) for word in words]
                return ' '.join(words)
            keywords[keyword] = keywords[keyword].apply(stem_words)
            key['new'] = key['new'].apply(stem_words)
            keywords[keyword] = keywords[keyword].map(lambda x: re.sub(' ; ', '; ', x))
            return keywords, key
         
        keywords, key = clean_keyword(extype) 
         
        if method is 'Lemmatization':
            keywords, key = Lemmatization(extype)
        else:
            keywords, key = Stemming(extype)
                
        st.write('Congratulations! 🀩 You choose',keyword ,'with',method,'method. Now, you can easily download the result by clicking the button below')
        st.divider()
              
        #===show & download csv===
        tab1, tab2, tab3, tab4, tab5 = st.tabs(["πŸ“₯ Result", "πŸ“₯ List of Keywords", "πŸ“ƒ Reference", "πŸ“ƒ Recommended Reading", "⬇️ Download Help"])
         
        with tab1:
            st.dataframe(keywords, use_container_width=True, hide_index=True)
            @st.cache_data(ttl=3600)
            def convert_df(extype):
                return keywords.to_csv(index=False).encode('utf-8')
             
            @st.cache_data(ttl=3600)
            def convert_txt(extype):
                return keywords.to_csv(index=False, sep='\t', lineterminator='\r').encode('utf-8')
             
            if extype.endswith('.csv'):
                csv = convert_df(extype)
                st.download_button(
                    "Press to download result πŸ‘ˆ",
                    csv,
                    "result.csv",
                    "text/csv")
      
            elif extype.endswith('.txt'):
                keywords = rev_conv_txt(extype)
                txt = convert_txt(extype)
                st.download_button(
                    "Press to download result πŸ‘ˆ",
                    txt,
                    "result.txt",
                    "text/csv")    
             
        with tab2:
            @st.cache_data(ttl=3600)
            def table_keyword(extype):
                keytab = key.drop(['index'], axis=1).rename(columns={0: 'label'})
                return keytab
                
            #===coloring the same keywords===
            @st.cache_data(ttl=3600)
            def highlight_cells(value):
                if keytab['new'].duplicated(keep=False).any() and keytab['new'].duplicated(keep=False)[keytab['new'] == value].any():
                    return 'background-color: yellow'
                return '' 
            keytab = table_keyword(extype) 
            st.dataframe(keytab.style.applymap(highlight_cells, subset=['new']), use_container_width=True, hide_index=True)
                      
            @st.cache_data(ttl=3600)
            def convert_dfs(extype):
                return key.to_csv(index=False).encode('utf-8')
                    
            csv = convert_dfs(extype)
    
            st.download_button(
                "Press to download keywords πŸ‘ˆ",
                csv,
                "keywords.csv",
                "text/csv")
                 
        with tab3:
            st.markdown('**Santosa, F. A. (2023). Prior steps into knowledge mapping: Text mining application and comparison. Issues in Science and Technology Librarianship, 102.** https://doi.org/10.29173/istl2736')
         
        with tab4:
            st.markdown('**Beri, A. (2021, January 27). Stemming vs Lemmatization. Medium.** https://towardsdatascience.com/stemming-vs-lemmatization-2daddabcb221')
            st.markdown('**Khyani, D., Siddhartha B S, Niveditha N M, &amp; Divya B M. (2020). An Interpretation of Lemmatization and Stemming in Natural Language Processing. Journal of University of Shanghai for Science and Technology , 22(10), 350–357.**  https://jusst.org/an-interpretation-of-lemmatization-and-stemming-in-natural-language-processing/')
            st.markdown('**Lamba, M., & Madhusudhan, M. (2021, July 31). Text Pre-Processing. Text Mining for Information Professionals, 79–103.** https://doi.org/10.1007/978-3-030-85085-2_3')

        with tab5:
            st.text("Download keywords at bottom of table")
            st.divider()
            st.text("Download table")
            st.markdown("![Downloading visualization](https://raw.githubusercontent.com/faizhalas/library-tools/mainimages/downloadtable.png")
    except Exception as e:
        st.write(e)
        st.error("Please ensure that your file is correct. Please contact us if you find that this is an error.", icon="🚨")
        st.stop()