File size: 20,651 Bytes
d4ac1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c837e02
 
 
d4ac1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c837e02
 
d4ac1c4
 
 
 
 
 
 
 
 
c837e02
d4ac1c4
 
 
 
 
 
 
 
c837e02
 
 
 
 
 
 
 
 
d4ac1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c837e02
 
 
 
 
d4ac1c4
 
c837e02
d4ac1c4
 
c837e02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ac1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c837e02
 
 
 
d4ac1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c837e02
 
d4ac1c4
 
 
c837e02
d4ac1c4
c837e02
d4ac1c4
 
 
 
 
 
c837e02
 
 
 
d4ac1c4
c837e02
 
 
 
d4ac1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c837e02
 
d4ac1c4
c837e02
d4ac1c4
 
 
c837e02
d4ac1c4
c837e02
d4ac1c4
 
c837e02
d4ac1c4
 
 
 
 
c837e02
 
 
 
 
 
 
 
 
 
 
 
d4ac1c4
c837e02
d4ac1c4
 
 
 
 
 
 
c837e02
d4ac1c4
c837e02
 
d4ac1c4
 
 
 
c837e02
d4ac1c4
 
 
 
 
 
 
 
 
 
c837e02
 
d4ac1c4
 
 
 
c837e02
 
 
d4ac1c4
c837e02
 
d4ac1c4
c837e02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ac1c4
c837e02
 
 
d4ac1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c837e02
d4ac1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c837e02
 
 
 
 
 
 
 
 
 
 
 
 
d4ac1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c837e02
d4ac1c4
 
 
c837e02
d4ac1c4
 
c837e02
d4ac1c4
 
c837e02
d4ac1c4
 
 
c837e02
d4ac1c4
c837e02
 
 
 
 
 
 
d4ac1c4
 
 
 
c837e02
d4ac1c4
 
 
 
 
 
c837e02
d4ac1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c837e02
d4ac1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c837e02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ac1c4
c837e02
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import streamlit as st
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
import nltk
import spacy
from burst_detection import burst_detection, enumerate_bursts, burst_weights
import matplotlib.pyplot as plt
import os
import io
import math
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import plotly.io as pio
import sys
import json
from tools import sourceformat as sf


#===config===
st.set_page_config(
    page_title="Coconut",
    page_icon="🥥",
    layout="wide",
    initial_sidebar_state="collapsed"
)

hide_streamlit_style = """
            <style>
            #MainMenu 
            {visibility: hidden;}
            footer {visibility: hidden;}
            [data-testid="collapsedControl"] {display: none}
            </style>
            """
st.markdown(hide_streamlit_style, unsafe_allow_html=True)

with st.popover("🔗 Menu"):
    st.page_link("https://www.coconut-libtool.com/", label="Home", icon="🏠")
    st.page_link("pages/1 Scattertext.py", label="Scattertext", icon="1️⃣")
    st.page_link("pages/2 Topic Modeling.py", label="Topic Modeling", icon="2️⃣")
    st.page_link("pages/3 Bidirected Network.py", label="Bidirected Network", icon="3️⃣")
    st.page_link("pages/4 Sunburst.py", label="Sunburst", icon="4️⃣")
    st.page_link("pages/5 Burst Detection.py", label="Burst Detection", icon="5️⃣")
    st.page_link("pages/6 Keywords Stem.py", label="Keywords Stem", icon="6️⃣")
    st.page_link("pages/7 Sentiment Analysis.py", label="Sentiment Analysis", icon="7️⃣")
    st.page_link("pages/8 Shifterator.py", label="Shifterator", icon="8️⃣")

st.header("Burst Detection", anchor=False)
st.subheader('Put your file here...', anchor=False)

#===clear cache===
def reset_all():
    st.cache_data.clear()

# Initialize NLP model
nlp = spacy.load("en_core_web_sm")

@st.cache_data(ttl=3600)
def upload(extype):
    df = pd.read_csv(uploaded_file)
    #lens.org
    if 'Publication Year' in df.columns:
               df.rename(columns={'Publication Year': 'Year', 'Citing Works Count': 'Cited by',
                                     'Publication Type': 'Document Type', 'Source Title': 'Source title'}, inplace=True)
    if "About the data" in df.columns[0]:
        df = sf.dim(df)
        col_dict = {'MeSH terms': 'Keywords',
        'PubYear': 'Year',
        'Times cited': 'Cited by',
        'Publication Type': 'Document Type'
        }
        df.rename(columns=col_dict, inplace=True)
    
    return df

@st.cache_data(ttl=3600)
def get_ext(uploaded_file):
    extype = uploaded_file.name
    return extype

@st.cache_data(ttl=3600)
def get_minmax(df):
    MIN = int(df['Year'].min())
    MAX = int(df['Year'].max())
    GAP = MAX - MIN
    return MIN, MAX, GAP

@st.cache_data(ttl=3600)
def conv_txt(extype):
    if("PMID" in (uploaded_file.read()).decode()):
        uploaded_file.seek(0)
        papers = sf.medline(uploaded_file)
        print(papers)
        return papers
    col_dict = {'TI': 'Title',
            'SO': 'Source title',
            'DE': 'Author Keywords',
            'DT': 'Document Type',
            'AB': 'Abstract',
            'TC': 'Cited by',
            'PY': 'Year',
            'ID': 'Keywords Plus',
            'rights_date_used': 'Year'}
    uploaded_file.seek(0)
    papers = pd.read_csv(uploaded_file, sep='\t')
    if("htid" in papers.columns):
        papers = sf.htrc(papers)
    papers.rename(columns=col_dict, inplace=True)
    print(papers)
    return papers

def conv_json(extype):
    col_dict={'title': 'title',
    'rights_date_used': 'Year',
    }

    data = json.load(uploaded_file)
    hathifile = data['gathers']
    keywords = pd.DataFrame.from_records(hathifile)
    
    keywords = sf.htrc(keywords)
    keywords.rename(columns=col_dict,inplace=True)
    return keywords

def conv_pub(extype):
    if (get_ext(extype)).endswith('.tar.gz'):
        bytedata = extype.read()
        keywords = sf.readPub(bytedata)
    elif (get_ext(extype)).endswith('.xml'):
        bytedata = extype.read()
        keywords = sf.readxml(bytedata)
    return keywords

# Helper Functions
@st.cache_data(ttl=3600)
def get_column_name(df, possible_names):
    """Find and return existing column names from a list of possible names."""
    for name in possible_names:
        if name in df.columns:
            return name
    raise ValueError(f"None of the possible names {possible_names} found in DataFrame columns.")

@st.cache_data(ttl=3600)
def preprocess_text(text):
    """Lemmatize and remove stopwords from text."""
    return ' '.join([token.lemma_.lower() for token in nlp(text) if token.is_alpha and not token.is_stop])

@st.cache_data(ttl=3600)
def load_data(uploaded_file):
    """Load data from the uploaded file."""
    extype = get_ext(uploaded_file)
    if extype.endswith('.csv'):
         df = upload(extype) 
    elif extype.endswith('.txt'):
         df = conv_txt(extype)
    elif extype.endswith('.json'):
        df = conv_json(extype)
    elif extype.endswith('.tar.gz') or extype.endswith('.xml'):
        df = conv_pub(uploaded_file)

    df['Year'] = pd.to_numeric(df['Year'], errors='coerce')
    df = df.dropna(subset=['Year'])
    df['Year'] = df['Year'].astype(int)
        
    if 'Title' in df.columns and 'Abstract' in df.columns:
        coldf = ['Abstract', 'Title']
    elif 'Title' in df.columns:
        coldf = ['Title']
    elif 'Abstract' in df.columns:
        coldf = ['Abstract']
    else:
        coldf = sorted(df.select_dtypes(include=['object']).columns.tolist())

    MIN, MAX, GAP = get_minmax(df)

    return df, coldf, MIN, MAX, GAP

@st.cache_data(ttl=3600)
def clean_data(df):

    years = list(range(YEAR[0],YEAR[1]+1))
    df = df.loc[df['Year'].isin(years)]
    
    # Preprocess text
    df['processed'] = df.apply(lambda row: preprocess_text(f"{row.get(col_name, '')}"), axis=1)

    ngram_range = (1, xgram)
    
    # Vectorize processed text
    if count_method == "Document Frequency":
        vectorizer = CountVectorizer(lowercase=False, tokenizer=lambda x: x.split(), binary=True, ngram_range=ngram_range)
    else:
        vectorizer = CountVectorizer(lowercase=False, tokenizer=lambda x: x.split(), ngram_range=ngram_range)
    X = vectorizer.fit_transform(df['processed'].tolist())
    
    # Create DataFrame from the Document-Term Matrix (DTM)
    dtm = pd.DataFrame(X.toarray(), columns=vectorizer.get_feature_names_out(), index=df['Year'].values)
    yearly_term_frequency = dtm.groupby(dtm.index).sum()

    # excluded & included words
    if exc_inc == "Words to exclude":
        excluded_words = [word.strip() for word in words_input.split(',')]
        filtered_words = [word for word in yearly_term_frequency.columns if word not in excluded_words]
    
    elif exc_inc == "Focus on these words":
        included_words = [word.strip() for word in words_input.split(',')]   
        filtered_words = [word for word in yearly_term_frequency.columns if word in included_words]

    top_words = yearly_term_frequency[filtered_words].sum().nlargest(top_n).index.tolist()
    
    return yearly_term_frequency, top_words

@st.cache_data(ttl=3600)
def apply_burst_detection(top_words, data):
    all_bursts_list = []

    start_year = int(data.index.min())
    end_year = int(data.index.max())
    all_years = range(start_year, end_year + 1)
    
    continuous_years = pd.Series(index=all_years, data=0)  # Start with a series of zeros for all years

    years = continuous_years.index.tolist()
    
    all_freq_data = pd.DataFrame(index=years)
    
    for i, word in enumerate(top_words, start=1):
        # Update with actual counts where available
        word_counts = data[word].reindex(continuous_years.index, fill_value=0)
        
        # Convert years and counts to lists for burst detection
        r = continuous_years.index.tolist()  # List of all years
        r = np.array(r, dtype=int)
        d = word_counts.values.tolist()  # non-zero counts
        d = np.array(d, dtype=float)
        y = r.copy()
     
        if len(r) > 0 and len(d) > 0:
            n = len(r)
            q, d, r, p = burst_detection(d, r, n, s=2.0, gamma=1.0, smooth_win=1)
            bursts = enumerate_bursts(q, word)
            bursts = burst_weights(bursts, r, d, p)
            all_bursts_list.append(bursts)
    
            freq_data = yearly_term_frequency[word].reindex(years, fill_value=0)
            all_freq_data[word] = freq_data

    all_bursts = pd.concat(all_bursts_list, ignore_index=True)

    num_unique_labels = len(all_bursts['label'].unique())

    num_rows = math.ceil(top_n / 2)

    if running_total == "Running total":
        all_freq_data = all_freq_data.cumsum()
                        
    return all_bursts, all_freq_data, num_unique_labels, num_rows

@st.cache_data(ttl=3600)
def convert_df(df):
    return df.to_csv().encode("utf-8")

@st.cache_data(ttl=3600)
def scattervis(bursts, freq_data, top_n):
    freq_data = freq_data.reset_index()
    freq_data.rename(columns={"index": "Year"}, inplace=True)
    
    freq_data_melted = freq_data.melt(id_vars=["Year"], var_name="Category", value_name="Value")
    freq_data_melted = freq_data_melted[freq_data_melted["Value"] > 0]
    
    wordlist = freq_data_melted["Category"].unique()
    years = freq_data["Year"].tolist()
    
    bursts["begin"] = bursts["begin"].apply(lambda x: years[min(x, len(years) - 1)] if x < len(years) else None)
    bursts["end"] = bursts["end"].apply(lambda x: years[min(x, len(years) - 1)] if x < len(years) else None)

    burst_points = []
    for _, row in bursts.iterrows():
        for year in range(row["begin"], row["end"] + 1):
            burst_points.append((year, row["label"], row["weight"]))
    burst_points_df = pd.DataFrame(burst_points, columns=["Year", "Category", "Weight"])

    min_year = min(years)
    max_year = max(years)
    n_years = max_year - min_year + 1
    n_labels = len(wordlist)

    label_spacing = 50   
    year_spacing = 60    

    plot_height = n_labels * label_spacing + 100
    plot_width = n_years * year_spacing + 150

    fig = go.Figure()

    # scatter trace for burst points
    fig.add_trace(go.Scatter(
        x=burst_points_df["Year"],
        y=burst_points_df["Category"],
        mode='markers',
        marker=dict(
            symbol='square',
            size=40,
            color='red',
            opacity=0.5
        ),
        hoverinfo='text',
        text=burst_points_df["Weight"],
        showlegend=False
    ))

    # scatter trace for freq_data
    fig.add_trace(go.Scatter(
        x=freq_data_melted["Year"],
        y=freq_data_melted["Category"],
        mode='markers+text',
        marker=dict(
            symbol='square',
            size=30,
            color=freq_data_melted["Value"],
            colorscale='Blues',
            showscale=False
        ),
        text=freq_data_melted["Value"],
        textposition="middle center",
        textfont=dict(
            size=16,
            color=['white' if value > freq_data_melted["Value"].max()/2 else 'black'
                   for value in freq_data_melted["Value"]]
        )
    ))

    # Layout
    fig.update_layout(
        xaxis=dict(
            tickmode='linear',
            dtick=1,
            range=[min_year - 1, max_year + 1],
            tickfont=dict(size=16),
            automargin=True,
            showgrid=False,
            zeroline=False
        ),
        yaxis=dict(
            tickvals=wordlist,
            ticktext=wordlist,
            tickmode='array',
            tickfont=dict(size=16),
            automargin=True,
            showgrid=False,
            zeroline=False
        ),
        plot_bgcolor='white',
        paper_bgcolor='white',
        showlegend=False,
        margin=dict(l=20, r=20, t=20, b=20),
        height=plot_height,
        width=plot_width,
        autosize=False
    )
                    
    fig.write_image("scatter_plot.png")
    st.image("scatter_plot.png")
    pio.write_image(fig, 'result.png', scale=4)  

@st.cache_data(ttl=3600)
def linegraph(bursts, freq_data):
    fig = make_subplots(rows=num_rows, cols=2, subplot_titles=freq_data.columns[:top_n])
    
    row, col = 1, 1
    for i, column in enumerate(freq_data.columns[:top_n]):
        fig.add_trace(go.Scatter(
            x=freq_data.index, y=freq_data[column], mode='lines+markers+text', name=column,
            line_shape='linear',
            hoverinfo='text',
            hovertext=[f"Year: {index}<br>Frequency: {freq}" for index, freq in zip(freq_data.index, freq_data[column])],
            #text=freq_data[column],
            textposition='top center'
        ), row=row, col=col)
        # Add area charts
        for _, row_data in bursts[bursts['label'] == column].iterrows():
            x_values = freq_data.index[row_data['begin']:row_data['end']+1]
            y_values = freq_data[column][row_data['begin']:row_data['end']+1]
            #middle_y = sum(y_values) / len(y_values)
            y_post = min(freq_data[column]) + 1 if running_total == "Running total" else sum(y_values) / len(y_values)
            x_offset = 0.1
                        
            # Add area chart
            fig.add_trace(go.Scatter(
                x=x_values,
                y=y_values,
                fill='tozeroy', mode='lines', fillcolor='rgba(0,100,80,0.2)',
            ), row=row, col=col)
    
            align_value = "left" if running_total == "Running total" else "center"
            valign_value = "bottom" if running_total == "Running total" else "middle"
                                            
            # Add annotation for weight at the bottom
            fig.add_annotation(
                x=x_values[0] + x_offset,
                y=y_post,
                text=f"Weight: {row_data['weight']:.2f}",
                showarrow=False,
                font=dict(
                    color="black",
                    size=12),
                align=align_value,
                valign=valign_value,
                textangle=270,
                row=row, col=col
                )
            
            # Add labels for values only in bursts
            fig.add_trace(go.Scatter(
            x=x_values, y=y_values, mode='lines+markers+text', name=column,
            line_shape='linear',
            hoverinfo='text',
            hovertext=[f"Year: {index}<br>Frequency: {freq}" for index, freq in zip(freq_data.index, freq_data[column])],
            text=y_values,
            textposition='top center'
        ), row=row, col=col)
            print(freq_data[column])


        col += 1
        if col > 2:
            col = 1
            row += 1
                
    fig.update_layout(
        showlegend=False,
        margin=dict(l=20, r=20, t=100, b=20),
        height=num_rows * 500,
        width=1500
    )
                
    fig.write_image("line_graph.png")
    st.image("line_graph.png")
    pio.write_image(fig, 'result.png', scale=4)

@st.cache_data(ttl=3600)
def download_result(freq_data, bursts):
    csv1 = convert_df(freq_data)
    csv2 = convert_df(bursts)
    return csv1, csv2
      
uploaded_file = st.file_uploader('', type=['csv', 'txt','json','tar.gz','xml'], on_change=reset_all)

if uploaded_file is not None:
    try:
        c1, c2, c3 = st.columns([3,3,4])
        top_n = c1.number_input("Number of top words to analyze", min_value=5, value=10, step=1, on_change=reset_all)
        viz_selected = c2.selectbox("Option for visualization",
            ("Line graph", "Heatmap"), on_change=reset_all)
        running_total = c3.selectbox("Calculation method",
            ("Running total", "By occurrences each year"), on_change=reset_all)
        count_method = c1.selectbox("Count by",
            ("Term Frequency", "Document Frequency"), on_change=reset_all)

        df, coldf, MIN, MAX, GAP = load_data(uploaded_file)
        col_name = c2.selectbox("Select column to analyze",
            (coldf), on_change=reset_all)
        xgram = c3.selectbox("N-grams", ("1", "2", "3"), on_change=reset_all)
        xgram = int(xgram)

        st.divider()
        d1, d2 = st.columns([3,7])
        exc_inc = d1.radio("Select to exclude or focus on specific words", ["Words to exclude","Focus on these words"], horizontal=True, on_change=reset_all)
        words_input = d2.text_input("Words to exclude or focus on (comma-separated)", on_change=reset_all)

        if (GAP != 0):
            YEAR = st.slider('Year', min_value=MIN, max_value=MAX, value=(MIN, MAX), on_change=reset_all)
        else:
            c1.write('You only have data in ', (MAX))
            sys.exit(1)
      
        yearly_term_frequency, top_words = clean_data(df) 
        
        bursts, freq_data, num_unique_labels, num_rows = apply_burst_detection(top_words, yearly_term_frequency)

        tab1, tab2, tab3, tab4 = st.tabs(["📈 Generate visualization", "📃 Reference", "📓 Recommended Reading", "⬇️ Download Help"])

        with tab1:        
            if bursts.empty:
                st.warning('We cannot detect any bursts', icon='⚠️')
    
            else:
                if num_unique_labels == top_n:
                    st.info(f'We detect a burst on {num_unique_labels} word(s)', icon="ℹ️")
                elif num_unique_labels < top_n:
                    st.info(f'We only detect a burst on {num_unique_labels} word(s), which is {top_n - num_unique_labels} fewer than the top word(s)', icon="ℹ️")

                if viz_selected == "Line graph": 
                    linegraph(bursts, freq_data)
                    
                elif viz_selected =="Scatter plot":
                    scattervis(bursts, freq_data, top_n)
                
                csv1, csv2 = download_result(freq_data, bursts)
                e1, e2, e3 = st.columns(3)
                with open('result.png', "rb") as file:
                    btn = e1.download_button(
                        label="📊 Download high resolution image",
                        data=file,
                        file_name="burst.png",
                        mime="image/png")
                    
                e2.download_button(
                    "👉 Press to download list of top words",
                    csv1,
                    "top-keywords.csv",
                    "text/csv")
    
                e3.download_button(
                    "👉 Press to download the list of detected bursts",
                    csv2,
                    "burst.csv",
                    "text/csv")
 
        with tab2:
            st.markdown('**Kleinberg, J. (2002). Bursty and hierarchical structure in streams. Knowledge Discovery and Data Mining.** https://doi.org/10.1145/775047.775061')

        with tab3:
            st.markdown('**Li, M., Zheng, Z., & Yi, Q. (2024). The landscape of hot topics and research frontiers in Kawasaki disease: scientometric analysis. Heliyon, 10(8), e29680–e29680.** https://doi.org/10.1016/j.heliyon.2024.e29680')
            st.markdown('**Domicián Máté, Ni Made Estiyanti and Novotny, A. (2024) ‘How to support innovative small firms? Bibliometric analysis and visualization of start-up incubation’, Journal of Innovation and Entrepreneurship, 13(1).** https://doi.org/10.1186/s13731-024-00361-z')
            st.markdown('**Lamba, M., Madhusudhan, M. (2022). Burst Detection. In: Text Mining for Information Professionals. Springer, Cham.** https://doi.org/10.1007/978-3-030-85085-2_6')
            st.markdown('**Santosa, F. A. (2025). Artificial Intelligence in Library Studies: A Textual Analysis. JLIS.It, 16(1).** https://doi.org/10.36253/jlis.it-626')
        
        with tab4:
            st.subheader(':blue[Burst Detection]', anchor=False)
            st.button('📊 Download high resolution image', on_click=None)
            st.text("Click download button.") 

            st.divider()
            st.subheader(':blue[Top words]', anchor=False)
            st.button('👉 Press to download list of top words', on_click=None)
            st.text("Click download button.")  

            st.divider()
            st.subheader(':blue[Burst]', anchor=False)
            st.button('👉 Press to download the list of detected bursts', on_click=None)
            st.text("Click download button.")
            
    except Exception as e:
        st.error("Please ensure that your file or settings are correct. If you think there is a mistake, feel free to reach out to us!", icon="🚨")
        st.stop()