File size: 8,243 Bytes
d4ac1c4
 
 
 
 
 
c837e02
 
 
d4ac1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c837e02
d4ac1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c837e02
 
 
 
 
 
 
 
 
d4ac1c4
 
 
 
c837e02
 
 
 
 
d4ac1c4
 
 
c837e02
d4ac1c4
 
c837e02
 
 
 
 
 
 
d4ac1c4
c837e02
d4ac1c4
 
c837e02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ac1c4
c837e02
d4ac1c4
 
 
 
 
 
 
 
 
c837e02
 
 
 
 
d4ac1c4
 
 
 
 
c837e02
 
d4ac1c4
c837e02
 
 
d4ac1c4
 
 
 
c837e02
d4ac1c4
 
 
 
 
 
c837e02
d4ac1c4
 
 
c837e02
d4ac1c4
 
 
 
c837e02
d4ac1c4
c837e02
d4ac1c4
 
 
 
 
 
 
 
 
c837e02
 
 
d4ac1c4
 
 
 
 
c837e02
d4ac1c4
 
 
 
c837e02
d4ac1c4
c837e02
 
d4ac1c4
 
 
 
 
 
 
c837e02
 
 
 
d4ac1c4
 
c837e02
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#===import module===
import streamlit as st
import pandas as pd
import plotly.express as px
import numpy as np
import sys
import json
from tools import sourceformat as sf


#===config===
st.set_page_config(
    page_title="Coconut",
    page_icon="🥥",
    layout="wide",
    initial_sidebar_state="collapsed"
)

hide_streamlit_style = """
            <style>
            #MainMenu 
            {visibility: hidden;}
            footer {visibility: hidden;}
            [data-testid="collapsedControl"] {display: none}
            </style>
            """
st.markdown(hide_streamlit_style, unsafe_allow_html=True)

with st.popover("🔗 Menu"):
    st.page_link("https://www.coconut-libtool.com/", label="Home", icon="🏠")
    st.page_link("pages/1 Scattertext.py", label="Scattertext", icon="1️⃣")
    st.page_link("pages/2 Topic Modeling.py", label="Topic Modeling", icon="2️⃣")
    st.page_link("pages/3 Bidirected Network.py", label="Bidirected Network", icon="3️⃣")
    st.page_link("pages/4 Sunburst.py", label="Sunburst", icon="4️⃣")
    st.page_link("pages/5 Burst Detection.py", label="Burst Detection", icon="5️⃣")
    st.page_link("pages/6 Keywords Stem.py", label="Keywords Stem", icon="6️⃣")
    st.page_link("pages/7 Sentiment Analysis.py", label="Sentiment Analysis", icon="7️⃣")
    
st.header("Sunburst Visualization", anchor=False)
st.subheader('Put your file here...', anchor=False)

#===clear cache===
def reset_all():
    st.cache_data.clear()

#===check type===
@st.cache_data(ttl=3600)
def get_ext(extype):
    extype = uploaded_file.name
    return extype

@st.cache_data(ttl=3600)
def upload(extype):
    papers = pd.read_csv(uploaded_file)
    #lens.org
    if 'Publication Year' in papers.columns:
            papers.rename(columns={'Publication Year': 'Year', 'Citing Works Count': 'Cited by',
                                    'Publication Type': 'Document Type', 'Source Title': 'Source title'}, inplace=True)
    if "About the data" in papers.columns[0]:
        papers = sf.dim(papers)
        col_dict = {'MeSH terms': 'Keywords',
        'PubYear': 'Year',
        'Times cited': 'Cited by',
        'Publication Type': 'Document Type'
        }
        papers.rename(columns=col_dict, inplace=True)
    
    return papers

@st.cache_data(ttl=3600)
def conv_txt(extype):
    if("PMID" in (uploaded_file.read()).decode()):
        uploaded_file.seek(0)
        papers = sf.medline(uploaded_file)
        print(papers)
        return papers
    col_dict = {'TI': 'Title',
            'SO': 'Source title',
            'DE': 'Author Keywords',
            'DT': 'Document Type',
            'AB': 'Abstract',
            'TC': 'Cited by',
            'PY': 'Year',
            'ID': 'Keywords Plus',
            'rights_date_used': 'Year'}
    uploaded_file.seek(0)
    papers = pd.read_csv(uploaded_file, sep='\t')
    if("htid" in papers.columns):
        papers = sf.htrc(papers)
    papers.rename(columns=col_dict, inplace=True)
    print(papers)
    return papers

@st.cache_data(ttl=3600)
def conv_json(extype):
    col_dict={'title': 'title',
    'rights_date_used': 'Year',
    'content_provider_code': 'Document Type',
    'Keywords':'Source title'
    }

    data = json.load(uploaded_file)
    hathifile = data['gathers']
    keywords = pd.DataFrame.from_records(hathifile)

    keywords = sf.htrc(keywords)
    keywords['Cited by'] = keywords.groupby(['Keywords'])['Keywords'].transform('size')
    keywords.rename(columns=col_dict,inplace=True)
    return keywords

def conv_pub(extype):
    if (get_ext(extype)).endswith('.tar.gz'):
        bytedata = extype.read()
        keywords = sf.readPub(bytedata)
    elif (get_ext(extype)).endswith('.xml'):
        bytedata = extype.read()
        keywords = sf.readxml(bytedata)
    keywords['Cited by'] = keywords.groupby(['Keywords'])['Keywords'].transform('size')
    st.write(keywords)
    return keywords

#===Read data===
uploaded_file = st.file_uploader('', type=['csv', 'txt','json','tar.gz', 'xml'], on_change=reset_all)

if uploaded_file is not None:
    try:
        extype = get_ext(uploaded_file)
        if extype.endswith('.csv'):
             papers = upload(extype) 
       
        elif extype.endswith('.txt'):
             papers = conv_txt(extype)
        elif extype.endswith('.json'):
            papers = conv_json(extype)
        elif extype.endswith('.tar.gz') or extype.endswith('.xml'):
            papers = conv_pub(uploaded_file)

        @st.cache_data(ttl=3600)
        def get_minmax(extype):
            extype = extype
            MIN = int(papers['Year'].min())
            MAX = int(papers['Year'].max())
            MIN1 = int(papers['Cited by'].min())
            MAX1 = int(papers['Cited by'].max())
            GAP = MAX - MIN
            return papers, MIN, MAX, GAP, MIN1, MAX1

        tab1, tab2, tab3 = st.tabs(["📈 Generate visualization", "📓 Recommended Reading", "⬇️ Download Help"])
        
        with tab1:    
            #===sunburst===
            try:
                papers, MIN, MAX, GAP, MIN1, MAX1 = get_minmax(extype)
            except KeyError:
                st.error('Error: Please check again your columns.')
                sys.exit(1)
            
            if (GAP != 0):
                YEAR = st.slider('Year', min_value=MIN, max_value=MAX, value=(MIN, MAX), on_change=reset_all)
                KEYLIM = st.slider('Cited By Count',min_value = MIN1, max_value = MAX1, value = (MIN1,MAX1), on_change=reset_all)
            else:
                st.write('You only have data in ', (MAX))
                YEAR = (MIN, MAX)
                KEYLIM = (MIN1,MAX1)
            @st.cache_data(ttl=3600)
            def listyear(extype):
                global papers
                years = list(range(YEAR[0],YEAR[1]+1))
                cited = list(range(KEYLIM[0],KEYLIM[1]+1))
                papers = papers.loc[papers['Year'].isin(years)]
                papers = papers.loc[papers['Cited by'].isin(cited)]
                return years, papers
            
            @st.cache_data(ttl=3600)
            def vis_sunbrust(extype):
                papers['Cited by'] = papers['Cited by'].fillna(0)
                vis = pd.DataFrame()
                vis[['doctype','source','citby','year']] = papers[['Document Type','Source title','Cited by','Year']]
                viz=vis.groupby(['doctype', 'source', 'year'])['citby'].agg(['sum','count']).reset_index()  
                viz.rename(columns={'sum': 'cited by', 'count': 'total docs'}, inplace=True)



                fig = px.sunburst(viz, path=['doctype', 'source', 'year'], values='total docs',
                              color='cited by', 
                              color_continuous_scale='RdBu',
                              color_continuous_midpoint=np.average(viz['cited by'], weights=viz['total docs']))
                fig.update_layout(height=800, width=1200)
                return fig, viz
            
            years, papers = listyear(extype)
    
            if {'Document Type','Source title','Cited by','Year'}.issubset(papers.columns):
                fig, viz = vis_sunbrust(extype)
                st.plotly_chart(fig, height=800, width=1200) #use_container_width=True)
                
                st.dataframe(viz)
               
            else:
                st.error('We require these columns: Document Type, Source title, Cited by, Year', icon="🚨")
        
        with tab2:
            st.markdown('**numpy.average — NumPy v1.24 Manual. (n.d.). Numpy.Average — NumPy v1.24 Manual.** https://numpy.org/doc/stable/reference/generated/numpy.average.html')
            st.markdown('**Sunburst. (n.d.). Sunburst Charts in Python.** https://plotly.com/python/sunburst-charts/')

        with tab3:
            st.text("Click the camera icon on the top right menu (you may need to hover your cursor within the visualization)")
            st.markdown("![Downloading visualization](https://raw.githubusercontent.com/faizhalas/library-tools/main/images/download_bertopic.jpg)")
    except:
        st.error("Please ensure that your file is correct. Please contact us if you find that this is an error.", icon="🚨")
        st.stop()