|
from flask import Flask, request, jsonify, Response |
|
from faster_whisper import WhisperModel |
|
import torch |
|
import io |
|
import time |
|
import datetime |
|
from threading import Semaphore |
|
import os |
|
from werkzeug.utils import secure_filename |
|
import tempfile |
|
from moviepy.editor import VideoFileClip |
|
|
|
app = Flask(__name__) |
|
|
|
|
|
MAX_CONCURRENT_REQUESTS = 2 |
|
MAX_FILE_DURATION = 60 * 30 |
|
TEMPORARY_FOLDER = tempfile.gettempdir() |
|
ALLOWED_AUDIO_EXTENSIONS = {'mp3', 'wav', 'ogg', 'm4a', 'flac', 'aac', 'wma', 'opus', 'aiff'} |
|
ALLOWED_VIDEO_EXTENSIONS = {'mp4', 'avi', 'mov', 'mkv', 'webm', 'flv', 'wmv', 'mpeg', 'mpg', '3gp'} |
|
ALLOWED_EXTENSIONS = ALLOWED_AUDIO_EXTENSIONS.union(ALLOWED_VIDEO_EXTENSIONS) |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
compute_type = "float16" if device == "cuda" else "int8" |
|
print(f"Using device: {device} with compute_type: {compute_type}") |
|
|
|
|
|
beamsize = 2 |
|
wmodel = WhisperModel( |
|
"guillaumekln/faster-whisper-small", |
|
device=device, |
|
compute_type=compute_type, |
|
download_root="./model_cache" |
|
) |
|
|
|
|
|
request_semaphore = Semaphore(MAX_CONCURRENT_REQUESTS) |
|
active_requests = 0 |
|
|
|
def allowed_file(filename): |
|
return '.' in filename and \ |
|
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS |
|
|
|
def cleanup_temp_files(*file_paths): |
|
"""Ensure temporary files are deleted after processing""" |
|
for file_path in file_paths: |
|
try: |
|
if file_path and os.path.exists(file_path): |
|
os.remove(file_path) |
|
except Exception as e: |
|
print(f"Error cleaning up temp file {file_path}: {str(e)}") |
|
|
|
def extract_audio_from_video(video_path, output_audio_path): |
|
"""Extract audio from a video file and save it as a temporary audio file""" |
|
try: |
|
video = VideoFileClip(video_path) |
|
if video.duration > MAX_FILE_DURATION: |
|
video.close() |
|
raise ValueError(f"Video duration exceeds {MAX_FILE_DURATION} seconds") |
|
video.audio.write_audiofile(output_audio_path) |
|
video.close() |
|
return output_audio_path |
|
except Exception as e: |
|
raise Exception(f"Failed to extract audio from video: {str(e)}") |
|
|
|
@app.route("/health", methods=["GET"]) |
|
def health_check(): |
|
"""Endpoint to check if API is running""" |
|
return jsonify({ |
|
'status': 'API is running', |
|
'timestamp': datetime.datetime.now().isoformat(), |
|
'device': device, |
|
'compute_type': compute_type, |
|
'active_requests': active_requests, |
|
'max_duration_supported': MAX_FILE_DURATION, |
|
'supported_formats': list(ALLOWED_EXTENSIONS) |
|
}) |
|
|
|
@app.route("/status/busy", methods=["GET"]) |
|
def server_busy(): |
|
"""Endpoint to check if server is busy""" |
|
is_busy = active_requests >= MAX_CONCURRENT_REQUESTS |
|
return jsonify({ |
|
'is_busy': is_busy, |
|
'active_requests': active_requests, |
|
'max_capacity': MAX_CONCURRENT_REQUESTS |
|
}) |
|
|
|
@app.route("/whisper_transcribe", methods=["POST"]) |
|
def transcribe(): |
|
global active_requests |
|
|
|
if not request_semaphore.acquire(blocking=False): |
|
return jsonify({'error': 'Server busy'}), 503 |
|
|
|
active_requests += 1 |
|
start_time = time.time() |
|
temp_file_path = None |
|
temp_audio_path = None |
|
|
|
try: |
|
if 'file' not in request.files: |
|
return jsonify({'error': 'No file provided'}), 400 |
|
|
|
file = request.files['file'] |
|
if not (file and allowed_file(file.filename)): |
|
return jsonify({'error': f'Invalid file format. Supported: {", ".join(ALLOWED_EXTENSIONS)}'}), 400 |
|
|
|
|
|
temp_file_path = os.path.join(TEMPORARY_FOLDER, secure_filename(file.filename)) |
|
file.save(temp_file_path) |
|
|
|
|
|
file_extension = file.filename.rsplit('.', 1)[1].lower() |
|
if file_extension in ALLOWED_VIDEO_EXTENSIONS: |
|
temp_audio_path = os.path.join(TEMPORARY_FOLDER, f"temp_audio_{int(time.time())}.wav") |
|
extract_audio_from_video(temp_file_path, temp_audio_path) |
|
transcription_file = temp_audio_path |
|
else: |
|
transcription_file = temp_file_path |
|
|
|
|
|
segments, _ = wmodel.transcribe( |
|
transcription_file, |
|
beam_size=beamsize, |
|
vad_filter=True, |
|
without_timestamps=True, |
|
compression_ratio_threshold=2.4, |
|
word_timestamps=False |
|
) |
|
|
|
full_text = " ".join(segment.text for segment in segments) |
|
return jsonify({ |
|
'transcription': full_text, |
|
'file_type': 'video' if file_extension in ALLOWED_VIDEO_EXTENSIONS else 'audio' |
|
}), 200 |
|
|
|
except Exception as e: |
|
return jsonify({'error': str(e)}), 500 |
|
|
|
finally: |
|
cleanup_temp_files(temp_file_path, temp_audio_path) |
|
active_requests -= 1 |
|
request_semaphore.release() |
|
print(f"Processed in {time.time()-start_time:.2f}s (Active: {active_requests})") |
|
|
|
if __name__ == "__main__": |
|
|
|
if not os.path.exists(TEMPORARY_FOLDER): |
|
os.makedirs(TEMPORARY_FOLDER) |
|
|
|
app.run(host="0.0.0.0", port=7860, threaded=True) |