from flask import Flask, request, jsonify from faster_whisper import WhisperModel import torch import io import time from threading import Lock from queue import Queue import datetime app = Flask(__name__) # Device check for faster-whisper device = "cuda" if torch.cuda.is_available() else "cpu" compute_type = "float16" if device == "cuda" else "int8" print(f"Using device: {device} with compute_type: {compute_type}") # Faster Whisper setup beamsize = 2 wmodel = WhisperModel("guillaumekln/faster-whisper-small", device=device, compute_type=compute_type) # Server status tracking active_requests = 0 request_queue = Queue() status_lock = Lock() MAX_CONCURRENT_REQUESTS = 2 # Adjust based on your server capacity @app.route("/health", methods=["GET"]) def health_check(): """Endpoint to check if API is running""" return jsonify({ 'status': 'API is running', 'timestamp': datetime.datetime.now().isoformat(), 'device': device, 'compute_type': compute_type }) @app.route("/status/busy", methods=["GET"]) def server_busy(): """Endpoint to check if server is busy""" with status_lock: is_busy = active_requests >= MAX_CONCURRENT_REQUESTS return jsonify({ 'is_busy': is_busy, 'active_requests': active_requests, 'max_capacity': MAX_CONCURRENT_REQUESTS, 'queue_size': request_queue.qsize() }) @app.route("/status/queue", methods=["GET"]) def queue_status(): """Endpoint to get current queue size""" return jsonify({ 'queue_size': request_queue.qsize(), 'active_requests': active_requests }) @app.route("/whisper_transcribe", methods=["POST"]) def whisper_transcribe(): global active_requests # Check if server is at capacity with status_lock: if active_requests >= MAX_CONCURRENT_REQUESTS: request_queue.put(datetime.datetime.now()) return jsonify({ 'status': 'Server busy', 'message': f'Currently processing {active_requests} requests', 'queue_position': request_queue.qsize() }), 503 active_requests += 1 try: if 'audio' not in request.files: return jsonify({'error': 'No file provided'}), 400 audio_file = request.files['audio'] allowed_extensions = {'mp3', 'wav', 'ogg', 'm4a'} if not (audio_file and audio_file.filename.lower().split('.')[-1] in allowed_extensions): return jsonify({'error': 'Invalid file format'}), 400 print(f"Transcribing audio on {device} (Active requests: {active_requests})") audio_bytes = audio_file.read() audio_file = io.BytesIO(audio_bytes) try: segments, info = wmodel.transcribe(audio_file, beam_size=beamsize) text = '' starttime = time.time() for segment in segments: text += segment.text print(f"Time to transcribe: {time.time() - starttime} seconds") return jsonify({'transcription': text}) except Exception as e: print(f"Transcription error: {str(e)}") return jsonify({'error': 'Transcription failed'}), 500 finally: with status_lock: active_requests -= 1 # Remove oldest queued request if any if not request_queue.empty(): try: request_queue.get_nowait() except: pass if __name__ == "__main__": app.run(host="0.0.0.0", debug=True, port=7860, threaded=True)