File size: 11,678 Bytes
26f400e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import torch
import torch.nn as nn
from typing import Dict, Optional, Tuple

import torch.nn.functional as F
import torch
import torch.nn as nn


class WMDetector(nn.Module):
    """
    Detect watermarks in an audio signal using a Transformer architecture,
    where the watermark bits are split into bytes (8 bits each).
    We assume nbits is a multiple of 8.
    """

    def __init__(
        self, input_channels: int, nbits: int, nchunk_size: int, d_model: int = 512
    ):
        """
        Args:
            input_channels (int): Number of input channels in the audio feature (e.g., mel channels).
            nbits (int): Total number of bits in the watermark, must be a multiple of 8.
            d_model (int): Embedding dimension for the Transformer.
        """
        super().__init__()
        self.nchunk_size = nchunk_size
        assert nbits % nchunk_size == 0, "nbits must be a multiple of 8!"
        self.nbits = nbits
        self.d_model = d_model
        # Number of bytes
        self.nchunks = nbits // nchunk_size

        # 1D convolution to map the input channels to d_model
        self.embedding = nn.Conv1d(input_channels, d_model, kernel_size=1)

        # Transformer encoder block
        self.transformer = nn.TransformerEncoder(
            nn.TransformerEncoderLayer(
                d_model=d_model,
                nhead=1,
                dim_feedforward=d_model * 2,
                activation="gelu",
                batch_first=True,
            ),
            num_layers=8,
        )

        # A linear head for watermark presence detection (binary)
        self.watermark_head = nn.Linear(d_model, 1)

        # For each byte, we perform a 256-way classification
        self.message_heads = nn.ModuleList(
            nn.Linear(d_model, 2**nchunk_size) for _ in range(self.nchunks)
        )

        # Learnable embeddings for each byte chunk (instead of per bit)
        # Shape: [nchunks, d_model]
        self.nchunk_embeddings = nn.Parameter(torch.randn(self.nchunks, d_model))

    def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Forward pass of the detector.

        Returns:
            logits (torch.Tensor): Watermark detection logits of shape [batch, seq_len].
            chunk_logits (torch.Tensor): Byte-level classification logits of shape [batch, nchunks, 256].
        """
        batch_size, input_channels, time_steps = x.shape

        # 1) Map [batch, in_channels, time_steps] β†’ [batch, time_steps, d_model]
        x = self.embedding(x).permute(0, 2, 1)  # [batch, time_steps, d_model]

        # 2) Prepend chunk embeddings at the beginning of the sequence
        #    [nchunks, d_model] β†’ [1, nchunks, d_model] β†’ [batch, nchunks, d_model]
        nchunk_embeds = self.nchunk_embeddings.unsqueeze(0).expand(batch_size, -1, -1)
        # Concatenate along the time dimension: [batch, nchunks + time_steps, d_model]
        x = torch.cat([nchunk_embeds, x], dim=1)

        # 3) Pass through the Transformer
        x = self.transformer(x)
        # x has shape [batch, nchunks + time_steps, d_model]

        # (a) Watermark presence detection: skip the first nchunks
        detection_part = x[:, self.nchunks :]  # [batch, time_steps, d_model]
        logits = self.watermark_head(detection_part).squeeze(-1)  # [batch, time_steps]

        # (b) Message decoding: use the first nchunks
        message_part = x[:, : self.nchunks]  # [batch, nchunks, d_model]
        chunk_logits_list = []
        for i, head in enumerate(self.message_heads):
            # message_part[:, i, :] has shape [batch, d_model]
            # each head outputs [batch, 256]
            chunk_vec = message_part[:, i, :]
            chunk_logits_list.append(head(chunk_vec).unsqueeze(1))  # [batch, 1, 256]

        # Concatenate along the 'nchunks' dimension β†’ [batch, nchunks, 256]
        chunk_logits = torch.cat(chunk_logits_list, dim=1)

        return logits, chunk_logits

    def detect_watermark(
        self,
        x: torch.Tensor,
        sample_rate: Optional[int] = None,
        threshold: float = 0.5,
    ) -> Tuple[float, torch.Tensor, torch.Tensor]:
        """
        A convenience function for inference.

        Returns:
            detect_prob (float): Probability that the audio is watermarked.
            binary_message (torch.Tensor): The recovered message of shape [batch, nbits] (binary).
            detected (torch.Tensor): The sigmoid values of the per-timestep watermark detection.
        """
        logits, chunk_logits = self.forward(x)
        # logits: [batch, seq_len] β†’ raw logits for watermark presence detection
        # chunk_logits: [batch, nchunks, 256] β†’ classification logits for each byte

        # (1) Compute watermark detection probability
        detected = torch.sigmoid(logits)  # [batch, seq_len]
        detect_prob = detected.mean(dim=-1).cpu().item()

        # (2) Decode the message: chunk_logits has shape [batch, nchunks, 256]
        chunk_probs = F.softmax(chunk_logits, dim=-1)  # [batch, nchunks, 256]
        chunk_indices = torch.argmax(
            chunk_probs, dim=-1
        )  # [batch, nchunks], each in [0..255]
        # (3) Convert each byte back to 8 bits
        #     Finally, assemble into a [batch, nbits] binary tensor
        binary_message = []
        for i in range(self.nchunks):
            chunk_val = chunk_indices[:, i]  # [batch]
            # Extract 8 bits from the integer (0..255)
            chunk_bits = []
            for b in range(self.nchunk_size):
                bit_b = (chunk_val >> b) & 1  # get bit b
                chunk_bits.append(bit_b.unsqueeze(-1))
            # Concatenate bits to shape [batch, 8]
            chunk_bits = torch.cat(chunk_bits, dim=-1)
            binary_message.append(chunk_bits)

        # Concatenate all bytes β†’ [batch, nbits]
        binary_message = torch.cat(binary_message, dim=-1)

        return detect_prob, binary_message, detected



class WMEmbedder(nn.Module):
    """
    A class that takes a secret message, processes it into chunk embeddings
    (as a small sequence), and uses a TransformerDecoder to do cross-attention
    between the original hidden (target) and the watermark tokens (memory).
    """

    def __init__(
        self,
        nbits: int,  # total bits in the secret message
        input_dim: int,  # the input dimension (e.g. audio feature dimension)
        nchunk_size: int,
        hidden_dim: int = 256,
        num_heads: int = 1,
        num_layers: int = 4,
    ):
        super().__init__()
        self.nchunk_size = nchunk_size
        assert nbits % nchunk_size == 0, "nbits must be a multiple of nchunk_size!"
        self.nbits = nbits
        self.nchunks = nbits // nchunk_size  # how many chunks

        # Each chunk (0..2^nchunk_size - 1) maps to an embedding of size [hidden_dim]
        self.msg_embeddings = nn.ModuleList(
            nn.Embedding(2**nchunk_size, hidden_dim) for _ in range(self.nchunks)
        )

        # Linear to project [input_dim] -> [hidden_dim]
        self.input_projection = nn.Linear(input_dim, hidden_dim)

        # TransformerDecoder for cross-attention
        # d_model=hidden_dim, so the decoder expects [b, seq_len, hidden_dim] as tgt
        # and [b, memory_len, hidden_dim] as memory
        decoder_layer = nn.TransformerDecoderLayer(
            d_model=hidden_dim,
            nhead=num_heads,
            dim_feedforward=2 * hidden_dim,
            activation="gelu",
            batch_first=True,  # so shape is [batch, seq, feature]
        )
        self.transformer_decoder = nn.TransformerDecoder(
            decoder_layer, num_layers=num_layers
        )

        # Project [hidden_dim] -> [input_dim]
        # self.output_projection1 = nn.Linear(hidden_dim * 2, hidden_dim)
        self.output_projection = nn.Linear(hidden_dim, input_dim)

    def forward(self, hidden: torch.Tensor, msg: torch.Tensor) -> torch.Tensor:
        """
        Args:
            hidden: [batch, input_dim, seq_len]
            msg: [batch, nbits]
        Returns:
            A tensor [batch, input_dim, seq_len] with watermark injected.
        """
        b, in_dim, seq_len = hidden.shape

        # 1) Project input features to [b, seq_len, hidden_dim]
        hidden_projected = self.input_projection(
            hidden.permute(0, 2, 1)
        )  # => [b, seq_len, hidden_dim]

        # 2) Convert the msg bits into a sequence of chunk embeddings
        #    We keep each chunk as one token => [b, nchunks, hidden_dim]
        chunk_emb_list = []
        for i in range(self.nchunks):
            # msg[:, i*nchunk_size : (i+1)*nchunk_size] => shape [b, nchunk_size]
            chunk_bits = msg[:, i * self.nchunk_size : (i + 1) * self.nchunk_size]
            chunk_val = torch.zeros_like(chunk_bits[:, 0])  # shape [b]
            for bit_idx in range(self.nchunk_size):
                # shift bits
                chunk_val += chunk_bits[:, bit_idx] << bit_idx

            # embedding => [b, hidden_dim]
            chunk_emb = self.msg_embeddings[i](chunk_val)
            chunk_emb_list.append(chunk_emb.unsqueeze(1))  # => [b,1,hidden_dim]

        # Concat => [b, nchunks, hidden_dim]
        chunk_emb_seq = torch.cat(chunk_emb_list, dim=1)  # [b, nchunks, hidden_dim]

        # 3) Use chunk_emb_seq as memory, hidden_projected as target for TransformerDecoder
        #
        # TransformerDecoder forward signature:
        #   transformer_decoder(tgt, memory, ...)
        #   => [b, seq_len, hidden_dim]
        x_decoded = self.transformer_decoder(
            tgt=hidden_projected,  # [b, seq_len, hidden_dim]
            memory=chunk_emb_seq,  # [b, nchunks, hidden_dim]
        )

        # 4) Project back to input_dim => [b, seq_len, input_dim]
        x_output = self.output_projection(x_decoded)

        # 5) permute back to [b, input_dim, seq_len]
        x_output = x_output.permute(0, 2, 1)  # => [b, input_dim, seq_len]

        # 6) (Optional) Residual with original hidden
        x_output = x_output + hidden

        return x_output


from speechtokenizer import SpeechTokenizer


class SBW(nn.Module):
    def __init__(self):
        super().__init__()
        self.nbits = 16
        config_path = (
            "speechtokenizer/pretrained_model/speechtokenizer_hubert_avg_config.json"
        )
        ckpt_path = "speechtokenizer/pretrained_model/SpeechTokenizer.pt"
        self.st_model = SpeechTokenizer.load_from_checkpoint(config_path, ckpt_path)
        self.msg_processor = WMEmbedder(
            nbits=16,
            input_dim=1024,
            nchunk_size=4,
        )
        self.detector = WMDetector(
            1024,
            16,
            nchunk_size=4,
        )

    def detect_watermark(
        self, x: torch.Tensor, return_logits=False
    ) -> Tuple[float, torch.Tensor]:
        embedding = self.st_model.forward_feature(x)
        if return_logits:
            return self.detector(embedding)
        return self.detector.detect_watermark(embedding)

    def forward(
        self,
        speech_input: torch.Tensor,
        message: Optional[torch.Tensor] = None,
    ) -> Dict[str, torch.Tensor]:
        recon, recon_wm, acoustic, acoustic_wm = self.st_model(
            speech_input, msg_processor=self.msg_processor, message=message
        )
        wav_length = min(speech_input.size(-1), recon_wm.size(-1))
        speech_input = speech_input[..., :wav_length]
        recon = recon[..., :wav_length]
        recon_wm = recon_wm[..., :wav_length]
        return {
            "recon": recon,
            "recon_wm": recon_wm,
        }