File size: 5,971 Bytes
26f400e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from models import SBW
import torchaudio
import torch
import os

def hamming_distance(s1, s2, base=2):
    """
    Calculate the absolute difference between two strings interpreted in chunks of a specified base.

    Args:
        s1 (str): The first binary string.
        s2 (str): The second binary string.
        base (int): The base to interpret the binary strings (e.g., 2 for binary, 16 for hexadecimal).

    Returns:
        int: The sum of absolute differences for corresponding chunks.

    Raises:
        ValueError: If the strings are not of equal length or invalid for the given base.
    """
    if len(s1) != len(s2):
        raise ValueError("Both strings must be of equal length")

    # Determine the chunk size for the given base
    import math

    chunk_size = int(math.log(base, 2))

    if len(s1) % chunk_size != 0 or len(s2) % chunk_size != 0:
        raise ValueError(
            f"Binary strings must be a multiple of {chunk_size} bits for base {base}"
        )

    # Split binary strings into chunks
    def to_chunks(binary_str):
        return [
            binary_str[i : i + chunk_size]
            for i in range(0, len(binary_str), chunk_size)
        ]

    chunks_s1 = to_chunks(s1)
    chunks_s2 = to_chunks(s2)

    # Convert chunks to integers and calculate absolute difference
    def absolute_difference_chunks(chunk1, chunk2):
        int1 = int(chunk1, 2)
        int2 = int(chunk2, 2)
        return abs(int1 - int2)

    return sum(
        absolute_difference_chunks(c1, c2) for c1, c2 in zip(chunks_s1, chunks_s2)
    )

def random_message(nbits: int, batch_size: int) -> torch.Tensor:
    """Return random message as 0/1 tensor."""
    if nbits == 0:
        return torch.tensor([])
    return torch.randint(0, 2, (batch_size, nbits))


def string_to_message(message_str: str, batch_size: int) -> torch.Tensor:
    """
    Convert a binary string to a message tensor.

    Args:
        message_str (str): A string of '0's and '1's.
        batch_size (int): The batch size for the output tensor.

    Returns:
        torch.Tensor: A tensor of shape (batch_size, nbits) where nbits is the length of message_str.
    """
    # Convert the string to a list of integers (0 and 1)
    message_list = [int(bit) for bit in message_str]
    nbits = len(message_list)
    # Convert the list to a tensor and repeat it for the batch size
    message_tensor = torch.tensor(message_list).unsqueeze(0).repeat(batch_size, 1)
    return message_tensor


class WatermarkSolver:
    def __init__(self):
        self.device = 'cpu'
        self.sample_rate = 16000
        self.nbits = 16
        self.model = SBW()

    def load_model(
        self, checkpoint_dir, checkpoint_name, strict=False
    ):
        """
        Load the latest model weights from the checkpoint directory.
        """
        checkpoint_files = [f for f in os.listdir(checkpoint_dir) if f.endswith(".pth")]
        if not checkpoint_files:
            print("No checkpoint files found in the directory.")
            return

        checkpoint_path = os.path.join(checkpoint_dir, checkpoint_name)
        print(f"Loading model weights from {checkpoint_path}...")

        # Load the checkpoint
        checkpoint = torch.load(checkpoint_path,map_location=torch.device('cpu'),weights_only=False)

        # Load model state dict with strict=False to allow missing keys (semantic_encoder)
        model_state_dict = checkpoint["model_state_dict"]

        new_state_dict = {}
        for k, v in model_state_dict.items():
            new_key = k.replace("module.", "")
            new_state_dict[new_key] = v
        if not strict:
            new_state_dict = {
                k: v
                for k, v in new_state_dict.items()
                if k in self.model.state_dict()
                and self.model.state_dict()[k].shape == v.shape
            }
        self.model.load_state_dict(new_state_dict, strict=False)

        print("Model state dict loaded successfully.")
        self.epoch = checkpoint["epoch"]
        print(f"Checkpoint loaded from epoch {checkpoint['epoch']}.")

    def infer_for_ui(self, input_audio_path, watermark, output_audio_path="tmp"):
        message_str = watermark
        self.model.eval()

        waveform, sample_rate = torchaudio.load(input_audio_path)

        if sample_rate != self.sample_rate:
            resampler = torchaudio.transforms.Resample(
                orig_freq=sample_rate, new_freq=self.sample_rate
            )
            waveform = resampler(waveform)

        waveform = waveform[:1].to(self.device).unsqueeze(1)
        message = string_to_message(message_str=message_str, batch_size=1).to(
            self.device
        )

        with torch.no_grad():
            output = self.model(
                waveform,
                message=message,
            )
            y_wm = output["recon_wm"]

        os.makedirs(output_audio_path, exist_ok=True)
        watermarked_audio_path = os.path.join(
            output_audio_path,
            f"{os.path.splitext(os.path.basename(input_audio_path))[0]}_watermarked.wav",
        )
        torchaudio.save(watermarked_audio_path, y_wm.squeeze(1).cpu(), self.sample_rate)
        return watermarked_audio_path

    def decode_for_ui(self, input_audio_path):
        self.model.eval()

        waveform, sample_rate = torchaudio.load(input_audio_path)

        if sample_rate != self.sample_rate:
            resampler = torchaudio.transforms.Resample(
                orig_freq=sample_rate, new_freq=self.sample_rate
            )
            waveform = resampler(waveform)

        waveform = waveform[:1].to(self.device).unsqueeze(1)

        with torch.no_grad():
            detect_prob, detected_message_tensor, _ = self.model.detect_watermark(waveform)
            detected_id = "".join(
                map(str, detected_message_tensor.squeeze(0).cpu().numpy().tolist())
            )

        return detect_prob,detected_id