Test / app.py
haalmalki03's picture
Update app.py
a6a3f41 verified
raw
history blame
652 Bytes
from transformers import pipeline
import gradio as gr
# Load the text classification pipeline
pipe = pipeline("text-classification", model="CAMeL-Lab/bert-base-arabic-camelbert-mix-sentiment")
# Define the function to classify text
def classify_text(text):
result = pipe(text)
return f"Label: {result[0]['label']}, Score: {result[0]['score']:.2f}"
# Create the Gradio interface
demo = gr.Interface(
fn=classify_text,
inputs="text",
outputs="text",
title="Arabic Text Classification",
description="Enter Arabic text to analyze its sentiment using CAMeL-Lab's Arabic BERT model."
)
# Launch the Gradio app
demo.launch()