from src.manager.budget_manager import BudgetManager from src.manager.agent_manager import AgentManager __all__ = ['AskAgent'] class AskAgent(): dependencies = ["ollama==0.4.7", "pydantic==2.11.1", "pydantic_core==2.33.0"] inputSchema = { "name": "AskAgent", "description": "Asks an AI agent a question and gets a response. The agent must be created using the AgentCreator tool before using this tool.", "parameters": { "type": "object", "properties": { "agent_name": { "type": "string", "description": "Name of the AI agent that is to be asked a question. This name cannot have spaces or special characters. It should be a single word.", }, "prompt": { "type": "string", "description": "This is the prompt that will be used to ask the agent a question. It should be a string that describes the question to be asked.", } }, "required": ["agent_name", "prompt"], } } def run(self, **kwargs): print("Asking agent a question") agent_name = kwargs.get("agent_name") prompt = kwargs.get("prompt") agent_manger = AgentManager() try: agent_response, remaining_resource_budget, remaining_expense_budget = agent_manger.ask_agent(agent_name=agent_name, prompt=prompt) except ValueError as e: return { "status": "error", "message": f"Error occurred: {str(e)}", "output": None } print("Agent response", agent_response) return { "status": "success", "message": "Agent has replied to the given prompt", "output": agent_response, "remaining_resource_budget": remaining_resource_budget, "remaining_expense_budget": remaining_expense_budget }