Commit
·
25fe98a
1
Parent(s):
a6407c2
Updated costs based on resource usage and actual api costs (created by HASHIRU AI)
Browse files
src/manager/manager.py
CHANGED
@@ -140,8 +140,13 @@ class GeminiManager:
|
|
140 |
role = "user"
|
141 |
if isinstance(message["content"], tuple):
|
142 |
path = message["content"][0]
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
145 |
continue
|
146 |
else:
|
147 |
parts = [types.Part.from_text(text=message.get("content", ""))]
|
@@ -197,19 +202,22 @@ class GeminiManager:
|
|
197 |
return results
|
198 |
|
199 |
def run(self, messages):
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
213 |
yield from self.invoke_manager(messages)
|
214 |
|
215 |
def invoke_manager(self, messages):
|
|
|
140 |
role = "user"
|
141 |
if isinstance(message["content"], tuple):
|
142 |
path = message["content"][0]
|
143 |
+
try:
|
144 |
+
file = self.client.files.upload(file=path)
|
145 |
+
formatted_history.append(file)
|
146 |
+
except Exception as e:
|
147 |
+
logger.error(f"Error uploading file: {e}")
|
148 |
+
formatted_history.append(
|
149 |
+
types.Part.from_text(text="Error uploading file: "+str(e)))
|
150 |
continue
|
151 |
else:
|
152 |
parts = [types.Part.from_text(text=message.get("content", ""))]
|
|
|
202 |
return results
|
203 |
|
204 |
def run(self, messages):
|
205 |
+
try:
|
206 |
+
if self.use_memory:
|
207 |
+
memories = self.get_k_memories(messages[-1]['content'], k=5, threshold=0.1)
|
208 |
+
if len(memories) > 0:
|
209 |
+
messages.append({
|
210 |
+
"role": "memories",
|
211 |
+
"content": f"{memories}",
|
212 |
+
})
|
213 |
+
messages.append({
|
214 |
+
"role": "assistant",
|
215 |
+
"content": f"Memories: {memories}",
|
216 |
+
"metadata": {"title": "Memories"}
|
217 |
+
})
|
218 |
+
yield messages
|
219 |
+
except Exception as e:
|
220 |
+
pass
|
221 |
yield from self.invoke_manager(messages)
|
222 |
|
223 |
def invoke_manager(self, messages):
|
src/tools/default_tools/agent_cost_manager.py
CHANGED
@@ -16,59 +16,59 @@ class AgentCostManager():
|
|
16 |
|
17 |
costs = {
|
18 |
"llama3.2": {
|
19 |
-
"description": "
|
20 |
-
"create_resource_cost":
|
21 |
-
"invoke_resource_cost":
|
22 |
},
|
23 |
"mistral": {
|
24 |
"description": "7 Billion parameter model",
|
25 |
-
"create_resource_cost":
|
26 |
-
"invoke_resource_cost":
|
27 |
},
|
28 |
"deepseek-r1": {
|
29 |
"description": "7 Billion reasoning model",
|
30 |
-
"create_resource_cost":
|
31 |
-
"invoke_resource_cost":
|
32 |
},
|
33 |
"gemini-2.5-flash-preview-04-17": {
|
34 |
"description": "Adaptive thinking, cost efficiency",
|
35 |
-
"create_expense_cost":
|
36 |
-
"invoke_expense_cost":
|
37 |
},
|
38 |
"gemini-2.5-pro-preview-03-25": {
|
39 |
"description": "Enhanced thinking and reasoning, multimodal understanding, advanced coding, and more",
|
40 |
-
"create_expense_cost":
|
41 |
-
"invoke_expense_cost":
|
42 |
},
|
43 |
"gemini-2.0-flash": {
|
44 |
"description": "Next generation features, speed, thinking, realtime streaming, and multimodal generation",
|
45 |
-
"create_expense_cost":
|
46 |
-
"invoke_expense_cost":
|
47 |
},
|
48 |
"gemini-2.0-flash-lite": {
|
49 |
"description": "Cost efficiency and low latency",
|
50 |
-
"create_expense_cost":
|
51 |
-
"invoke_expense_cost":
|
52 |
},
|
53 |
"gemini-1.5-flash": {
|
54 |
"description": "Fast and versatile performance across a diverse variety of tasks",
|
55 |
-
"create_expense_cost":
|
56 |
-
"invoke_expense_cost":
|
57 |
},
|
58 |
"gemini-1.5-flash-8b": {
|
59 |
"description": "High volume and lower intelligence tasks",
|
60 |
-
"create_expense_cost":
|
61 |
-
"invoke_expense_cost":
|
62 |
},
|
63 |
"gemini-1.5-pro": {
|
64 |
"description": "Complex reasoning tasks requiring more intelligence",
|
65 |
-
"create_expense_cost":
|
66 |
-
"invoke_expense_cost":
|
67 |
},
|
68 |
"gemini-2.0-flash-live-001": {
|
69 |
"description": "Low-latency bidirectional voice and video interactions",
|
70 |
-
"create_expense_cost":
|
71 |
-
"invoke_expense_cost":
|
72 |
}
|
73 |
}
|
74 |
|
|
|
16 |
|
17 |
costs = {
|
18 |
"llama3.2": {
|
19 |
+
"description": "1 Billion parameter model",
|
20 |
+
"create_resource_cost": 14,
|
21 |
+
"invoke_resource_cost": 15,
|
22 |
},
|
23 |
"mistral": {
|
24 |
"description": "7 Billion parameter model",
|
25 |
+
"create_resource_cost": 75,
|
26 |
+
"invoke_resource_cost": 40,
|
27 |
},
|
28 |
"deepseek-r1": {
|
29 |
"description": "7 Billion reasoning model",
|
30 |
+
"create_resource_cost": 28,
|
31 |
+
"invoke_resource_cost": 35,
|
32 |
},
|
33 |
"gemini-2.5-flash-preview-04-17": {
|
34 |
"description": "Adaptive thinking, cost efficiency",
|
35 |
+
"create_expense_cost": 0.005,
|
36 |
+
"invoke_expense_cost": 0.00017
|
37 |
},
|
38 |
"gemini-2.5-pro-preview-03-25": {
|
39 |
"description": "Enhanced thinking and reasoning, multimodal understanding, advanced coding, and more",
|
40 |
+
"create_expense_cost": 0.005,
|
41 |
+
"invoke_expense_cost": 0.0001275
|
42 |
},
|
43 |
"gemini-2.0-flash": {
|
44 |
"description": "Next generation features, speed, thinking, realtime streaming, and multimodal generation",
|
45 |
+
"create_expense_cost": 0.005,
|
46 |
+
"invoke_expense_cost": 0.00017
|
47 |
},
|
48 |
"gemini-2.0-flash-lite": {
|
49 |
"description": "Cost efficiency and low latency",
|
50 |
+
"create_expense_cost": 0.005,
|
51 |
+
"invoke_expense_cost": 0.00017
|
52 |
},
|
53 |
"gemini-1.5-flash": {
|
54 |
"description": "Fast and versatile performance across a diverse variety of tasks",
|
55 |
+
"create_expense_cost": 0.005,
|
56 |
+
"invoke_expense_cost": 0.00017
|
57 |
},
|
58 |
"gemini-1.5-flash-8b": {
|
59 |
"description": "High volume and lower intelligence tasks",
|
60 |
+
"create_expense_cost": 0.005,
|
61 |
+
"invoke_expense_cost": 0.00017
|
62 |
},
|
63 |
"gemini-1.5-pro": {
|
64 |
"description": "Complex reasoning tasks requiring more intelligence",
|
65 |
+
"create_expense_cost": 0.005,
|
66 |
+
"invoke_expense_cost": 0.0001275
|
67 |
},
|
68 |
"gemini-2.0-flash-live-001": {
|
69 |
"description": "Low-latency bidirectional voice and video interactions",
|
70 |
+
"create_expense_cost": 0.005,
|
71 |
+
"invoke_expense_cost": 0.000635
|
72 |
}
|
73 |
}
|
74 |
|
src/tools/user_tools/get_website_tool.py
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
import importlib
|
|
|
|
|
|
|
2 |
|
3 |
__all__ = ['GetWebsiteTool']
|
4 |
|
@@ -8,7 +11,7 @@ class GetWebsiteTool():
|
|
8 |
|
9 |
inputSchema = {
|
10 |
"name": "GetWebsiteTool",
|
11 |
-
"description": "Returns the content of a website based on a query string.",
|
12 |
"parameters": {
|
13 |
"type": "object",
|
14 |
"properties": {
|
@@ -21,6 +24,57 @@ class GetWebsiteTool():
|
|
21 |
}
|
22 |
}
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def run(self, **kwargs):
|
25 |
headers = {
|
26 |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:137.0) Gecko/20100101 Firefox/137.0',
|
@@ -46,7 +100,7 @@ class GetWebsiteTool():
|
|
46 |
"message": "Missing required parameters: 'url'",
|
47 |
"output": None
|
48 |
}
|
49 |
-
|
50 |
output = None
|
51 |
requests = importlib.import_module("requests")
|
52 |
bs4 = importlib.import_module("bs4")
|
@@ -57,17 +111,16 @@ class GetWebsiteTool():
|
|
57 |
# Parse the content using BeautifulSoup
|
58 |
soup = BeautifulSoup(response.content, 'html.parser')
|
59 |
# Extract text from the parsed HTML
|
60 |
-
|
|
|
|
|
|
|
61 |
else:
|
62 |
return {
|
63 |
"status": "error",
|
64 |
"message": f"Failed to fetch content from {url}. Status code: {response.status_code}",
|
65 |
"output": None
|
66 |
}
|
67 |
-
|
68 |
-
# truncate the results to avoid excessive output
|
69 |
-
if len(output) > 1000:
|
70 |
-
output = output[:1000] + "... (truncated)"
|
71 |
|
72 |
return {
|
73 |
"status": "success",
|
|
|
1 |
import importlib
|
2 |
+
from collections import defaultdict
|
3 |
+
import re
|
4 |
+
import time
|
5 |
|
6 |
__all__ = ['GetWebsiteTool']
|
7 |
|
|
|
11 |
|
12 |
inputSchema = {
|
13 |
"name": "GetWebsiteTool",
|
14 |
+
"description": "Returns a summary of the content of a website based on a query string.",
|
15 |
"parameters": {
|
16 |
"type": "object",
|
17 |
"properties": {
|
|
|
24 |
}
|
25 |
}
|
26 |
|
27 |
+
def summarize_text(self, text):
|
28 |
+
# Clean the text more thoroughly
|
29 |
+
text = re.sub(r'\[[0-9]*\]', ' ', text)
|
30 |
+
text = re.sub(r'\s+', ' ', text)
|
31 |
+
text = re.sub(r'[^a-zA-Z0-9.\s]', '', text) # Remove special characters except periods
|
32 |
+
|
33 |
+
# Tokenize into sentences
|
34 |
+
sentences = re.split(r'(?<=[.!?])\s+', text)
|
35 |
+
sentences = [s.strip() for s in sentences if s]
|
36 |
+
|
37 |
+
# Calculate word frequencies
|
38 |
+
word_frequencies = defaultdict(int)
|
39 |
+
for sentence in sentences:
|
40 |
+
words = sentence.lower().split()
|
41 |
+
for word in words:
|
42 |
+
word_frequencies[word] += 1
|
43 |
+
|
44 |
+
# Normalize word frequencies
|
45 |
+
total_words = sum(word_frequencies.values())
|
46 |
+
if total_words > 0:
|
47 |
+
for word in word_frequencies:
|
48 |
+
word_frequencies[word] /= total_words
|
49 |
+
|
50 |
+
# Calculate sentence scores based on word frequencies, sentence length, and coherence
|
51 |
+
sentence_scores = {}
|
52 |
+
for i, sentence in enumerate(sentences):
|
53 |
+
score = 0
|
54 |
+
words = sentence.lower().split()
|
55 |
+
for word in words:
|
56 |
+
score += word_frequencies[word]
|
57 |
+
|
58 |
+
# Consider sentence length
|
59 |
+
sentence_length_factor = 1 - abs(len(words) - 15) / 15 # Prefer sentences around 15 words
|
60 |
+
score += sentence_length_factor * 0.1
|
61 |
+
|
62 |
+
# Add a coherence score
|
63 |
+
if i > 0 and sentences[i-1] in sentence_scores:
|
64 |
+
previous_sentence_words = sentences[i-1].lower().split()
|
65 |
+
common_words = set(words) & set(previous_sentence_words)
|
66 |
+
coherence_score = len(common_words) / len(words)
|
67 |
+
score += coherence_score * 0.1
|
68 |
+
|
69 |
+
sentence_scores[sentence] = score
|
70 |
+
|
71 |
+
# Get the top 3 sentences with the highest scores
|
72 |
+
ranked_sentences = sorted(sentence_scores, key=sentence_scores.get, reverse=True)[:3]
|
73 |
+
|
74 |
+
# Generate the summary
|
75 |
+
summary = ". ".join(ranked_sentences) + "."
|
76 |
+
return summary
|
77 |
+
|
78 |
def run(self, **kwargs):
|
79 |
headers = {
|
80 |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:137.0) Gecko/20100101 Firefox/137.0',
|
|
|
100 |
"message": "Missing required parameters: 'url'",
|
101 |
"output": None
|
102 |
}
|
103 |
+
|
104 |
output = None
|
105 |
requests = importlib.import_module("requests")
|
106 |
bs4 = importlib.import_module("bs4")
|
|
|
111 |
# Parse the content using BeautifulSoup
|
112 |
soup = BeautifulSoup(response.content, 'html.parser')
|
113 |
# Extract text from the parsed HTML
|
114 |
+
text = soup.get_text()
|
115 |
+
|
116 |
+
# Summarize the text
|
117 |
+
output = self.summarize_text(text)
|
118 |
else:
|
119 |
return {
|
120 |
"status": "error",
|
121 |
"message": f"Failed to fetch content from {url}. Status code: {response.status_code}",
|
122 |
"output": None
|
123 |
}
|
|
|
|
|
|
|
|
|
124 |
|
125 |
return {
|
126 |
"status": "success",
|