hashiruAI / src /tools /default_tools /get_website_tool.py
helloparthshah's picture
Fixing get website tool
60ee681
import importlib
from collections import defaultdict
import re
import time
__all__ = ['GetWebsite']
class GetWebsite():
dependencies = ["requests", "beautifulsoup4==4.13.3"]
inputSchema = {
"name": "GetWebsite",
"description": "Returns the content of a website with enhanced error handling and output options.",
"parameters": {
"type": "object",
"properties": {
"url": {
"type": "string",
"description": "The URL of the website to fetch content from.",
},
"output_type": {
"type": "string",
"enum": ["summary", "full_text", "html"],
"description": "The type of output to return. 'summary' returns a summary of the text, 'full_text' returns the full text content, and 'html' returns the raw HTML content.",
"default": "summary"
},
"css_selector": {
"type": "string",
"description": "A CSS selector to extract specific content from the page.",
}
},
"required": ["url"],
}
}
def summarize_text(self, text):
# Clean the text more thoroughly
text = re.sub(r'\[[0-9]*\]', ' ', text)
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'[^a-zA-Z0-9.\s]', '', text) # Remove special characters except periods
# Tokenize into sentences
sentences = re.split(r'(?<=[.!?])\s+', text)
sentences = [s.strip() for s in sentences if s]
# Calculate word frequencies
word_frequencies = defaultdict(int)
for sentence in sentences:
words = sentence.lower().split()
for word in words:
word_frequencies[word] += 1
# Normalize word frequencies
total_words = sum(word_frequencies.values())
if total_words > 0:
for word in word_frequencies:
word_frequencies[word] /= total_words
# Calculate sentence scores based on word frequencies, sentence length, and coherence
sentence_scores = {}
for i, sentence in enumerate(sentences):
score = 0
words = sentence.lower().split()
for word in words:
score += word_frequencies[word]
# Consider sentence length
sentence_length_factor = 1 - abs(len(words) - 15) / 15 # Prefer sentences around 15 words
score += sentence_length_factor * 0.1
# Add a coherence score
if i > 0 and sentences[i - 1] in sentence_scores:
previous_sentence_words = sentences[i - 1].lower().split()
common_words = set(words) & set(previous_sentence_words)
coherence_score = len(common_words) / len(words)
score += coherence_score * 0.1
sentence_scores[sentence] = score
# Get the top 3 sentences with the highest scores
ranked_sentences = sorted(sentence_scores, key=sentence_scores.get, reverse=True)[:3]
# Generate the summary
summary = ". ".join(ranked_sentences) + "."
return summary
def run(self, **kwargs):
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:137.0) Gecko/20100101 Firefox/137.0',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'DNT': '1',
'Sec-GPC': '1',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1',
'Sec-Fetch-Dest': 'document',
'Sec-Fetch-Mode': 'navigate',
'Sec-Fetch-Site': 'none',
'Sec-Fetch-User': '?1',
'Priority': 'u=0, i',
}
print("Running enhanced web scraper")
url = kwargs.get("url")
output_type = kwargs.get("output_type", "summary")
css_selector = kwargs.get("css_selector")
if not url:
return {
"status": "error",
"message": "Missing required parameters: 'url'",
"output": None
}
output = None
requests = importlib.import_module("requests")
bs4 = importlib.import_module("bs4")
BeautifulSoup = bs4.BeautifulSoup
try:
response = requests.get(url, headers=headers, timeout=10)
response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
response.encoding = response.apparent_encoding # Handle encoding
if output_type == "html":
# Return the raw HTML content
return {
"status": "success",
"message": "Search completed successfully",
"output": response.text,
}
# Parse the content using BeautifulSoup
soup = BeautifulSoup(response.text, 'html.parser')
if css_selector:
# Extract text from the selected elements
elements = soup.select(css_selector)
text = ('\n'.join([element.get_text() for element in elements]))
text = text.encode('utf-8', 'ignore').decode('utf-8')
else:
# Extract text from the parsed HTML
text = soup.get_text()
text = text.encode('utf-8', 'ignore').decode('utf-8')
if output_type == "summary":
# Summarize the text
output = self.summarize_text(text)
elif output_type == "full_text":
output = text
else:
return {
"status": "error",
"message": f"Invalid output_type: {output_type}",
"output": None
}
return {
"status": "success",
"message": "Search completed successfully",
"output": output,
}
except requests.exceptions.RequestException as e:
return {
"status": "error",
"message": f"Request failed: {str(e)}",
"output": None
}
except Exception as e:
return {
"status": "error",
"message": str(e),
"output": None
}