|
from src.agent_manager import AgentManager |
|
__all__ = ['AgentCreator'] |
|
|
|
class AgentCreator(): |
|
dependencies = ["ollama==0.4.7", |
|
"pydantic==2.11.1", |
|
"pydantic_core==2.33.0"] |
|
|
|
inputSchema = { |
|
"name": "AgentCreator", |
|
"description": "Creates an AI agent for you. Please make sure to invoke the created agent using the AskAgent tool.", |
|
"parameters": { |
|
"type": "object", |
|
"properties":{ |
|
"agent_name": { |
|
"type": "string", |
|
"description": "Name of the AI agent that is to be created. This name cannot have spaces or special characters. It should be a single word.", |
|
}, |
|
"base_model": { |
|
"type": "string", |
|
"description": "A base model from which the new agent mode is to be created. Available models are: llama3.2, mistral" |
|
}, |
|
"system_prompt": { |
|
"type": "string", |
|
"description": "This is the system prompt that will be used to create the agent. It should be a string that describes the role of the agent and its capabilities." |
|
}, |
|
"description": { |
|
"type": "string", |
|
"description": "Description of the agent. This is a string that describes the agent and its capabilities. It should be a single line description.", |
|
}, |
|
}, |
|
"required": ["agent_name", "base_model", "system_prompt", "description"], |
|
}, |
|
"creates": { |
|
"selector": "base_model", |
|
"types": { |
|
"llama3.2":{ |
|
"description": "3 Billion parameter model", |
|
"create_cost": 10, |
|
"invoke_cost": 20, |
|
}, |
|
"mistral":{ |
|
"description": "7 Billion parameter model", |
|
"create_cost": 20, |
|
"invoke_cost": 50, |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
def run(self, **kwargs): |
|
print("Running Agent Creator") |
|
agent_name = kwargs.get("agent_name") |
|
base_model = kwargs.get("base_model") |
|
system_prompt = kwargs.get("system_prompt") |
|
description = kwargs.get("description") |
|
create_cost = self.inputSchema["creates"]["types"][base_model]["create_cost"] |
|
invoke_cost = self.inputSchema["creates"]["types"][base_model]["invoke_cost"] |
|
|
|
agent_manager = AgentManager() |
|
try: |
|
agent_manager.create_agent( |
|
agent_name=agent_name, |
|
base_model=base_model, |
|
system_prompt=system_prompt, |
|
description=description, |
|
create_cost=create_cost, |
|
invoke_cost=invoke_cost |
|
) |
|
except ValueError as e: |
|
return { |
|
"status": "error", |
|
"message": f"Error occurred: {str(e)}", |
|
"output": None |
|
} |
|
|
|
return { |
|
"status": "success", |
|
"message": "Agent successfully created", |
|
"cost": create_cost, |
|
} |