|
from google import genai |
|
from google.genai import types |
|
from google.genai.types import * |
|
import os |
|
from dotenv import load_dotenv |
|
import sys |
|
from src.manager.tool_manager import ToolManager |
|
from src.manager.utils.suppress_outputs import suppress_output |
|
import logging |
|
import gradio as gr |
|
from sentence_transformers import SentenceTransformer |
|
import torch |
|
from src.tools.default_tools.memory_manager import MemoryManager |
|
|
|
logger = logging.getLogger(__name__) |
|
handler = logging.StreamHandler(sys.stdout) |
|
|
|
logger.addHandler(handler) |
|
|
|
|
|
class GeminiManager: |
|
def __init__(self, toolsLoader: ToolManager = None, |
|
system_prompt_file="./src/models/system3.prompt", |
|
gemini_model="gemini-2.5-pro-exp-03-25", |
|
local_only=False, allow_tool_creation=True, |
|
cloud_only=False, use_economy=True): |
|
load_dotenv() |
|
self.toolsLoader: ToolManager = toolsLoader |
|
if not toolsLoader: |
|
self.toolsLoader: ToolManager = ToolManager() |
|
|
|
self.local_only = local_only |
|
self.allow_tool_creation = allow_tool_creation |
|
self.cloud_only = cloud_only |
|
self.use_economy = use_economy |
|
|
|
self.API_KEY = os.getenv("GEMINI_KEY") |
|
self.client = genai.Client(api_key=self.API_KEY) |
|
self.toolsLoader.load_tools() |
|
self.model_name = gemini_model |
|
self.memory_manager = MemoryManager() |
|
with open(system_prompt_file, 'r', encoding="utf8") as f: |
|
self.system_prompt = f.read() |
|
self.messages = [] |
|
|
|
def generate_response(self, messages): |
|
tools = self.toolsLoader.getTools() |
|
return self.client.models.generate_content( |
|
model=self.model_name, |
|
contents=messages, |
|
config=types.GenerateContentConfig( |
|
system_instruction=self.system_prompt, |
|
temperature=0.2, |
|
tools=tools, |
|
), |
|
) |
|
|
|
def handle_tool_calls(self, response): |
|
parts = [] |
|
i = 0 |
|
for function_call in response.function_calls: |
|
title = "" |
|
thinking = "" |
|
toolResponse = None |
|
logger.info( |
|
f"Function Name: {function_call.name}, Arguments: {function_call.args}") |
|
title = f"Invoking `{function_call.name}` with `{function_call.args}`\n" |
|
yield { |
|
"role": "assistant", |
|
"content": thinking, |
|
"metadata": { |
|
"title": title, |
|
"id": i, |
|
"status": "pending", |
|
} |
|
} |
|
try: |
|
toolResponse = self.toolsLoader.runTool( |
|
function_call.name, function_call.args) |
|
except Exception as e: |
|
logger.warning(f"Error running tool: {e}") |
|
toolResponse = { |
|
"status": "error", |
|
"message": f"Tool `{function_call.name}` failed to run.", |
|
"output": str(e), |
|
} |
|
logger.debug(f"Tool Response: {toolResponse}") |
|
thinking += f"Tool responded with ```\n{toolResponse}\n```\n" |
|
yield { |
|
"role": "assistant", |
|
"content": thinking, |
|
"metadata": { |
|
"title": title, |
|
"id": i, |
|
"status": "done", |
|
} |
|
} |
|
tool_content = types.Part.from_function_response( |
|
name=function_call.name, |
|
response={"result": toolResponse}) |
|
try: |
|
self.toolsLoader.load_tools() |
|
except Exception as e: |
|
logger.info(f"Error loading tools: {e}. Deleting the tool.") |
|
yield { |
|
"role": "assistant", |
|
"content": f"Error loading tools: {e}. Deleting the tool.\n", |
|
"metadata": { |
|
"title": "Trying to load the newly created tool", |
|
} |
|
} |
|
|
|
self.toolsLoader.delete_tool( |
|
toolResponse['output']['tool_name'], toolResponse['output']['tool_file_path']) |
|
tool_content = types.Part.from_function_response( |
|
name=function_call.name, |
|
response={"result": f"{function_call.name} with {function_call.args} doesn't follow the required format, please read the other tool implementations for reference." + str(e)}) |
|
parts.append(tool_content) |
|
i += 1 |
|
yield { |
|
"role": "tool", |
|
"content": repr(types.Content( |
|
role='model' if self.model_name == "gemini-2.5-pro-exp-03-25" else 'tool', |
|
parts=parts |
|
)) |
|
} |
|
|
|
def format_chat_history(self, messages=[]): |
|
formatted_history = [] |
|
for message in messages: |
|
|
|
if not (message.get("role") == "assistant" and "metadata" in message): |
|
role = "model" |
|
parts = [types.Part.from_text(text=message.get("content", ""))] |
|
match message.get("role"): |
|
case "user": |
|
role = "user" |
|
case "memories": |
|
role = "user" |
|
parts = [types.Part.from_text(text="User memories: "+message.get("content", ""))] |
|
case "tool": |
|
role = "tool" |
|
formatted_history.append( |
|
eval(message.get("content", ""))) |
|
continue |
|
case "function_call": |
|
role = "model" |
|
formatted_history.append( |
|
eval(message.get("content", ""))) |
|
continue |
|
case _: |
|
role = "model" |
|
formatted_history.append(types.Content( |
|
role=role, |
|
parts=parts |
|
)) |
|
return formatted_history |
|
|
|
def get_k_memories(self, query, k=5, threshold=0.0): |
|
memories = MemoryManager().get_memories() |
|
if len(memories) == 0: |
|
return [] |
|
top_k = min(k, len(memories)) |
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
model = SentenceTransformer('all-MiniLM-L6-v2', device=device) |
|
doc_embeddings = model.encode(memories, convert_to_tensor=True, device=device) |
|
query_embedding = model.encode(query, convert_to_tensor=True, device=device) |
|
similarity_scores = model.similarity(query_embedding, doc_embeddings)[0] |
|
scores, indices = torch.topk(similarity_scores, k=top_k) |
|
results = [] |
|
for score, idx in zip(scores, indices): |
|
print(memories[idx], f"(Score: {score:.4f})") |
|
if score >= threshold: |
|
results.append(memories[idx]) |
|
return results |
|
|
|
def run(self, messages): |
|
memories = self.get_k_memories(messages[-1]['content'], k=5, threshold=0.1) |
|
if len(memories) > 0: |
|
messages.append({ |
|
"role": "memories", |
|
"content": f"{memories}", |
|
}) |
|
messages.append({ |
|
"role": "assistant", |
|
"content": f"Memories: {memories}", |
|
"metadata": {"title": "Memories"} |
|
}) |
|
yield messages |
|
yield from self.invoke_manager(messages) |
|
|
|
def invoke_manager(self, messages): |
|
chat_history = self.format_chat_history(messages) |
|
logger.debug(f"Chat history: {chat_history}") |
|
try: |
|
response = suppress_output(self.generate_response)(chat_history) |
|
except Exception as e: |
|
logger.debug(f"Error generating response: {e}") |
|
messages.append({ |
|
"role": "assistant", |
|
"content": f"Error generating response: {e}" |
|
}) |
|
logger.error(f"Error generating response: {e}") |
|
yield messages |
|
return |
|
logger.debug(f"Response: {response}") |
|
|
|
if (not response.text and not response.function_calls): |
|
messages.append({ |
|
"role": "assistant", |
|
"content": "No response from the model.", |
|
"metadata": {"title": "No response from the model."} |
|
}) |
|
|
|
|
|
if response.text is not None and response.text != "": |
|
messages.append({ |
|
"role": "assistant", |
|
"content": response.text |
|
}) |
|
yield messages |
|
|
|
|
|
if response.candidates[0].content and response.candidates[0].content.parts: |
|
|
|
messages.append({ |
|
"role": "function_call", |
|
"content": repr(response.candidates[0].content), |
|
}) |
|
|
|
|
|
if response.function_calls: |
|
for call in self.handle_tool_calls(response): |
|
yield messages + [call] |
|
if (call.get("role") == "tool" |
|
or (call.get("role") == "assistant" and call.get("metadata", {}).get("status") == "done")): |
|
messages.append(call) |
|
yield from self.invoke_manager(messages) |
|
return |
|
yield messages |
|
|